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1 Introduction and The Main Goal

Let (Xn)n∈N be a sequence of random variables (R.V.) on some probability space (Ω,F ,P). We define
the partial sum process:

Sn = X1 +X2 + · · ·+Xn =

n∑
i=1

Xi ∀n ≥ 1 (1)

1.1 The Objective

The main goal is to understand the behavior of the average
Sn
n

as n → ∞. This is studied under

appropriate assumptions on the process, usually for large enough fixed n.
The most convenient assumption is that the variables (the process) are Independent and Identi-

cally Distributed (i.i.d.).

• Recall: For a R.V. X : Ω → R, its distribution µX is a probability measure on R defined by
µX(A) = P(X ∈ A) = P(X−1(A)).

• X d
= Y ⇐⇒ µX = µY . This determines characteristics like Mean µ = E(X) and Variance.

• Independence implies: E(XY ) = E(X)E(Y ) (variables are unrelated).

2 Laws of Large Numbers (LLN)

2.1 Weak Law of Large Numbers (WLLN)

If E(X2) <∞, then
Sn
n
→ E(X1) in probability. In fact, for any ε > 0, we have the bound:

P
(∣∣∣∣Snn − EX1

∣∣∣∣ > ε

)
≤ 1

n

σ2

ε2
(2)

Main Question 1. Is
( 1

n

)
rate of convergance the best we can get?

This question leads to the theory of Large Deviations Estimates (LDE).

2.2 Strong Law of Large Numbers (SLLN)

If E|X1| < ∞, then
Sn
n
→ EX1 almost surely (a.s.). By subtracting the mean (let EX1 = µ,EX ′1 = 0),

we generally analyze the case where
Sn
n
→ 0.

2.3 Central Limit Theorem (CLT)

Assuming Sn is centered, Sn is usually much smaller than n (o(n)).

Main Question 2. What is the ”correct” size of Sn?

It is roughly
√
n. In an appropriate sense, this describes the Central Limit Theorem.
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3 Dynamical Systems: Dependence

Main Question 3. Is independence really necessary to prove limit laws?

Many processes are not independent.

Example 1 (Measure Preserving Dynamical Systems (MPDS)). Let Ω be a compact metric space (e.g.,
Borel probability space). Let f : Ω→ Ω be a continuous function. We define the iterations of x under f
as fn(ω) = f(f(. . . f(ω) . . . )).

Let µ be a probability measure on Ω that is invariant under f (i.e., ∀E ⊂ Ω, µ(f−1(E)) = µ(E)).
This is a Measure Preserving Dynamical System (MPDS).

Ω

ω

f
f(ω)

f2

f2(ω)

Figure 1: Visualization of Dynamical System Iterations on an Irregular Space Ω

Let ϕ : Ω→ R be an L1(µ) function (called an observable). Consider the random process:

X0(ω) = ϕ(ω) (3)

X1(ω) = ϕ(f(ω)) (4)

X2(ω) = ϕ(f ◦ f(ω)) (5)

Xn(ω) = ϕ(f ◦ f . . . f︸ ︷︷ ︸
n times

(ω)) = ϕ(fn(ω)) (6)

This process is identically distributed but not independent.

Example 2. Fixed rotations by θ. Xn is completely dependent on the previous point.

ω

ω + θ
ω + 2θ

ω + 3θ

Bn

The SLLN still holds for MPDS, but LDE and CLT require other hypotheses, specifically Decay of
Correlations (Mixing).

|E(XnXm)− E(Xn)E(Xm)| < Ce−ε|n−m| (7)

This implies the system loses memory fast (e.g., Markov processes).

4 Conditional Expectation and Martingales

Martingales generalize sums of i.i.d. random variables.
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4.1 Conditional Expectation

Given (Ω,F ,P) and a sub-σ-algebra F0 ⊂ F . For X ∈ L1, the conditional expectation E(X|F0) is the
unique F0-measurable random variable such that ∀E ∈ F0:∫

E

E(X|F0)dP =

∫
E

XdP (8)

Properties:

1. If X is F0-measurable, E(X|F0) = X.

2. If X is independent of F0, E(X|F0) = E(X).

3. Tower Property: If F1 ⊂ F2, E(E(X|F2)|F1) = E(X|F1).

4. Taking out what is known: E(XY |F0) = XE(Y |F0) if X is F0-measurable.

5. Jensen’s Inequality: ϕ(E(X|F0)) ≤ E(ϕ(X)|F0) for convex ϕ.

4.2 Martingales

A filtration is an increasing sequence of sub-σ-algebras Fn. A sequence (Xn) is adapted if Xn is
Fn-measurable.

Definition 1. X = (Xn) is a martingale with respect to Fn if:

1. Xn is adapted.

2. Xn ∈ L1.

3. E(Xn+1|Fn) = Xn.

Example 3. Sums of centered i.i.d. variables (Sn =
∑
Xi where E(Xi) = 0) form a martingale w.r.t

Fn = σ(X1, . . . , Xn).

Example 4 (Doob’s Martingale). Let
(
Fn
)

be a filteration. For X ∈ L1, Xn = E(X|Fn) is a martingale.

5 Doob’s Theorems and Decomposition

5.1 Doob’s Convergence Theorem

Let X = (Xn) be a (sub/super)martingale. Assume supn E|Xn| <∞ (Uniform L1 Boundedness). Then
there exists X∞ ∈ L1 such that Xn → X∞ almost surely.

5.2 Doob’s Decomposition Theorem

Let X = (Xn) be a random process in L1 adapted to Fn. There exists a unique decomposition:

Xn −X0 = Mn +An (9)

where:

• M = (Mn) is a martingale (null at 0, M0 = 0).

• A = (An) is a predictable process (An is Fn−1-measurable).

Derivation of the terms: To find An, we observe the increments. Since M is a martingale, E(Mk −
Mk−1|Fk−1) = 0. Taking the conditional expectation of the increment Xk −Xk−1:

E(Xk −Xk−1|Fk−1) = E((Mk +Ak)− (Mk−1 +Ak−1)|Fk−1)

= E(Mk −Mk−1|Fk−1) + E(Ak −Ak−1|Fk−1)

= 0 + (Ak −Ak−1) (since A is predictable)
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Thus, the increment of the predictable process is defined by the expected conditional drift of X. Summing
these up gives the explicit formula:

An =

n∑
k=1

E(Xk −Xk−1|Fk−1) (10)

X is a submartingale iff A is increasing.

n

V alue

Xn (Process)
An (Trend/Predictable)

Decomposition: X = M +A

6 Stopping Times and Transforms

6.1 Stopping Times

A random variable T : Ω→ Z+ ∪ {∞} is a stopping time if {T = n} ∈ Fn for all n.

Example 5. Hitting time: T (ω) = inf{n ≥ 0 : Xn(ω) ∈ B} for a Borel set B.

6.2 Stopped Process

Given a stopping time T , the stopped process XT is defined by XT
n (ω) = Xn∧T (ω), where n ∧ T =

min(n, T ).

Exercise 1. Show that if X is a (sub/super) martingale or predictable, then XT preserves this property.

6.3 Martingale Transform (Discrete Stochastic Integral)

Let C = (Cn)n≥1 be a predictable process and X = (Xn)n≥0 be a martingale. The transform C ·X is:

(C ·X)n =

n∑
k=1

Ck(Xk −Xk−1) (11)

Exercise 2 (Lemma). Prove that if Xn is a martingale, then (C ·X)n is a martingale (null at 0).

7 Martingales in L2 and Angle Brackets

7.1 Convergence in L2

If M = (Mn) is a martingale with supn E(M2
n) <∞, then limn→∞Mn exists almost surely and in L2.

Orthogonality of Increments (Derivation): We wish to compute E(M2
n). We can write Mn =

Mn−1 + (Mn −Mn−1). Squaring both sides:

M2
n = M2

n−1 + 2Mn−1(Mn −Mn−1) + (Mn −Mn−1)2 (12)

Taking expectations:

E(M2
n) = E(M2

n−1) + 2E[Mn−1(Mn −Mn−1)] + E[(Mn −Mn−1)2]
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Consider the middle term. Using the Tower Property E[·] = E[E(·|Fn−1)]:

E[Mn−1(Mn −Mn−1)] = E [E(Mn−1(Mn −Mn−1)|Fn−1)]

= E

Mn−1 E((Mn −Mn−1)|Fn−1)︸ ︷︷ ︸
=0 (Martingale prop)

 = 0

Thus, we arrive at the Pythagorean relation:

E(M2
n) = E(M2

0 ) +

n∑
k=1

E((Mk −Mk−1)2) (13)

7.2 Angle-Bracket Process 〈M〉
Let M be a martingale null at 0. M2 is a submartingale. By Doob’s Decomposition, M2 = N + A,
where A is predictable and increasing. We denote this A as 〈M〉.

〈M〉n =

n∑
k=1

E((Mk −Mk−1)2|Fk−1) (14)

7.3 Theorem: Convergence on Finite Variation

Theorem 1. Let M be a martingale null at 0. On the set {〈M〉∞ < ∞}, limn→∞Mn exists almost
surely.

Proof Sketch: We cannot apply Doob’s Convergence directly because supE|Mn| might not be finite.
We use a stopped process. Define stopping times Sk = inf{n ≥ 0 : 〈M〉n+1 > k}.

Exercise 3. Verify that (MSk)2 − 〈M〉Sk is a martingale.

Exercise 4. Show that 〈MSk〉 = 〈M〉Sk .

Since 〈M〉Sk
≤ k (by definition of Sk), MSk is uniformly bounded in L2. Therefore, limMSk

n exists
a.s. by Doob’s L2 consequence. Taking limits as k → ∞, we recover convergence on the set where
〈M〉∞ <∞.
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