Probability Lecture Notes

December 07

1 Introduction and The Main Goal

Let (X,)nen be a sequence of random variables (R.V.) on some probability space (2, F,P). We define
the partial sum process:

Sp=Xi+Xo+ + X, =) X, Vn > 1 (1)
=1

1.1 The Objective

S,
The main goal is to understand the behavior of the average — as n — oo. This is studied under

n
appropriate assumptions on the process, usually for large enough fixed n.
The most convenient assumption is that the variables (the process) are Independent and Identi-
cally Distributed (i.i.d.).

e Recall: For a R.V. X : Q — R, its distribution ux is a probability measure on R defined by
ix(4) = B(X € A) = P(X~1(A)).

e X1y — px = py. This determines characteristics like Mean u = E(X) and Variance.
e Independence implies: E(XY) = E(X)E(Y) (variables are unrelated).

2 Laws of Large Numbers (LLN)
2.1 Weak Law of Large Numbers (WLLN)
If E(X?) < oo, then % — E(X1) in probability. In fact, for any € > 0, we have the bound:
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Main Question 1. Is (7) rate of convergance the best we can get?
n

This question leads to the theory of Large Deviations Estimates (LDE).

2.2 Strong Law of Large Numbers (SLLIN)

If E|X4| < oo, then Sn — EX; almost surely (a.s.). By subtracting the mean (let EX; = p, EX{ = 0),
n

S
we generally analyze the case where — — 0.
n

2.3 Central Limit Theorem (CLT)

Assuming S, is centered, S, is usually much smaller than n (o(n)).
Main Question 2. What is the “correct” size of Sy, ?

It is roughly y/n. In an appropriate sense, this describes the Central Limit Theorem.



3 Dynamical Systems: Dependence

Main Question 3. Is independence really necessary to prove limit laws?
Many processes are not independent.

Example 1 (Measure Preserving Dynamical Systems (MPDS)). Let Q be a compact metric space (e.g.,
Borel probability space). Let f :Q — Q be a continuous function. We define the iterations of x under f

as F1(w) = F(F . f(@)o ).
Let p be a probability measure on §) that is invariant under f (i.e., VE C Q, u(f~Y(E)) = u(E)).
This is a Measure Preserving Dynamical System (MPDS).

Q

Figure 1: Visualization of Dynamical System Iterations on an Irregular Space 2

Let ¢ :  — R be an L' (u) function (called an observable). Consider the random process:

Xo(w) = p(w) 3)
Xi(w) = o(f(w)) (4)
Xa(w) = @(fo f(w)) ()
Xn(w) =@(fof... f(w)=e(f"(w)) (6)

n times
This process is identically distributed but not independent.

Example 2. Fized rotations by 0. X,, is completely dependent on the previous point.
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The SLLN still holds for MPDS, but LDE and CLT require other hypotheses, specifically Decay of
Correlations (Mixing).
IE(X, X,n) — E(X,)E(X,,)| < Ce~cln=m (7)

This implies the system loses memory fast (e.g., Markov processes).

4 Conditional Expectation and Martingales

Martingales generalize sums of i.i.d. random variables.



4.1 Conditional Expectation

Given (9, F,P) and a sub-o-algebra Fy C F. For X € L', the conditional expectation E(X|F) is the
unique JFp-measurable random variable such that VE € Fy:

/EIE(X|]-'0)dIP:/EXdIP (8)

Properties:

1. If X is Fp-measurable, E(X|Fy) = X.

2. If X is independent of Fy, E(X|Fy) = E(X).

Tower Property: If F; C Fo, E(E(X|F2)|F1) = E(X|F1).

=~ W

Taking out what is known: E(XY|F) = XE(Y|Fy) if X is Fo-measurable.
5. Jensen’s Inequality: ¢(E(X|F))) < E((X)|Fo) for convex ¢.

4.2 Martingales

A filtration is an increasing sequence of sub-o-algebras F,. A sequence (X,) is adapted if X,, is
Frn-measurable.

Definition 1. X = (X,,) is a martingale with respect to F,, if:
1. X, is adapted.
2. X, €L
3. E(Xni1|Fp) = Xn.

Example 3. Sums of centered i.i.d. variables (S, = > X; where E(X;) = 0) form a martingale w.r.t
Frn=0(Xy,...,Xn).

Example 4 (Doob’s Martingale). Let (F,,) be a filteration. For X € L', X,, = E(X|F,) is a martingale.

5 Doob’s Theorems and Decomposition

5.1 Doob’s Convergence Theorem

Let X = (X,,) be a (sub/super)martingale. Assume sup,, E|X,| < oo (Uniform L! Boundedness). Then
there exists X, € L' such that X,, — X, almost surely.

5.2 Doob’s Decomposition Theorem
Let X = (X,,) be a random process in L' adapted to JF,,. There exists a unique decomposition:
X, — Xo= M, + A, 9)
where:
o M = (M,) is a martingale (null at 0, My = 0).
e A= (A,) is a predictable process (4, is F,_1-measurable).

Derivation of the terms: To find A,,, we observe the increments. Since M is a martingale, E(Mj —
My,—1|Fr—1) = 0. Taking the conditional expectation of the increment X — Xj_1:

E(Xk — Xe—1]|Fr—1) = E((My + Ax) — (M1 + Ag—1)|Fr-1)

=E(My — My—1|Fr-1) + E(Ax — Ag—1]Fp—1)
=0+ (Ar — Ax—1) (since A is predictable)



Thus, the increment of the predictable process is defined by the expected conditional drift of X. Summing
these up gives the explicit formula:

Ap = E(Xy — Xi—1|Fe-1) (10)
k=1

X is a submartingale iff A is increasing.
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Decomposition: X =M + A

6 Stopping Times and Transforms

6.1 Stopping Times
A random variable T': Q — Z* U {cc} is a stopping time if {T' = n} € F, for all n.

Example 5. Hitting time: T(w) = inf{n > 0: X,,(w) € B} for a Borel set B.

6.2 Stopped Process

Given a stopping time T, the stopped process X7 is defined by X! (w) = X,ar(w), where n AT =
min(n, T).

Exercise 1. Show that if X is a (sub/super) martingale or predictable, then X T preserves this property.

6.3 Martingale Transform (Discrete Stochastic Integral)
Let C = (Cy,)n>1 be a predictable process and X = (X,,),>0 be a martingale. The transform C - X is:

(C : X)n = ch(Xk - Xk—l) (11)
k=1

Exercise 2 (Lemma). Prove that if X, is a martingale, then (C - X),, is a martingale (null at 0).

7 Martingales in L? and Angle Brackets

7.1 Convergence in L2

If M = (M,,) is a martingale with sup,, E(M?2) < oo, then lim,, o, M, exists almost surely and in L2
Orthogonality of Increments (Derivation): We wish to compute E(M2). We can write M,, =
M, 1 + (M,, — M,,_1). Squaring both sides:

M2 = M2 +2My,_1(M,, — My _1) + (M, — M,,_1)? (12)
Taking expectations:

E(MS) = ]E(Mrgl—l) + QE[Mnfl(Mn - Mnfl)] + E[(Mn - Mnfl)Q}



Consider the middle term. Using the Tower Property E[] = E[E(-|F,—1)]:

]E[Mn—l(Mn - Mn—l)} =E [E(Mn—l(Mn - Mn—1)|‘/_'.n—l)}

=E Mn—l E((Mn *Mn—1)|-/_'.n—1) =0

=0 (Martingale prop)

Thus, we arrive at the Pythagorean relation:
E(M}) = E(Mg) + Y E((M}, — My_1)?) (13)
k=1

7.2 Angle-Bracket Process (M)

Let M be a martingale null at 0. M? is a submartingale. By Doob’s Decomposition, M? = N + A,
where A is predictable and increasing. We denote this A as (M).

(M), = B((My — My_1)*|Fi—1) (14)
k=1
7.3 Theorem: Convergence on Finite Variation

Theorem 1. Let M be a martingale null at 0. On the set {(M)o, < 00}, limy, oo My, exists almost
surely.

Proof Sketch: We cannot apply Doob’s Convergence directly because sup E|M,,| might not be finite.
We use a stopped process. Define stopping times Sy, = inf{n > 0: (M),41 > k}.

Exercise 3. Verify that (M°*)? — (M) is a martingale.
Exercise 4. Show that (M%) = (M)"*.

Since (M)g, < k (by definition of Sy), M** is uniformly bounded in L2. Therefore, lim M exists
a.s. by Doob’s L? consequence. Taking limits as k — oo, we recover convergence on the set where
(M)oo < 0.



