Probability Lecture Notes

December 08

1 The Moment Method and the LLIN

1.1 Weak Law of Large Numbers (WLLN)
Let X1, Xy,...,X,,... beiid. random variables. Assume 0? = E[X?] < oo and E[X}] =

| )

Then, for any € > 0:
S
Proof (p = 2). Using Chebyshev’s inequality:

E[S?] no?  o?
]P)(|Sn| > 7’L€) < 222 = 222 = @ —0

Recall that for S, =31 | X;:
i=1 it
Taking expectations (using independence and E[X;] = 0):
B[S?] = SEIX? + ST ELXJELY;] = nEX?] = no?
i=1 i
]

1.2 Connection between Convergence in Probability and A.S.

Lemma 1. If X,, — X in probability at a rate > r, < oo, i.e.,
P(| X, — X| >¢) <r, where Zrn < 00,

then X,, — X almost surely (a.s.).

Exercise 1. Proof. Hint: Use Borel-Cantelli lemma. If > P(E),) < oo, then P(limsup E,,) =
0 (meaning F, happens infinitely often with probability 0).



1.3 Strong Law of Large Numbers (SLLN) with 4th Moment

Theorem 1 (SLLN). If E[X?] < oo (and E[X;] = 0), then S — 0 a.s.
n

Proof. We use the 4th moment method and Markov’s inequality:
E[S4]

n

P(S] 2 ne) < — 2

Expanding Sp = (31, Xi)*:

St = ixg‘ + ) XXX XY XX+
=1

1,9,k i#£]
indices distinct

When taking the expectation E[S?], any term with a singleton index (like X;, X? X, etc.)
vanishes because E[X;] = 0. The only surviving terms are of the form X' and X?X?.

E[S,] = nE[X{] + 3n(n — 1)(E[X]])*

Thus, E[S1] < Cn?. Substituting this back into the probability bound:

Cn? 1
(5] 55-o(2)

1 S
Since )  — < o0, by the Borel-Cantelli lemma (or the previous Lemma), — — 0 a.s. [
n n

Sn

n

1.4 Remark on Truncation

The WLLN and SLLN actually hold with just E|X| < co. To derive this stronger version,
we use truncation. Let M > 0. Define:

X = XH{|X‘§M} + X]I{|X‘>M} = XSM +Xomr

We use the fact that: E|X|
P(lX|>M) < —
(X1 > M) < =

and E[X. ] relates to the tail probabilities.



2 Martingales and Large Deviations

2.1 SLLN for Martingales in L?

Recall: Let M = (M,), be a martingale. Let W = (W), be a martingale, null at
0 (Wo = 0). Under an appropriate scaling, we analyze the structure. We have the
decomposition W2 = P + C, where:

e P is a martingale.
e C' = (V) is the Predictable Increasing Process (Quadratic Variation).

Example 1. Let (X,,) be independent RVs in L? with E[X;] = 0. Let S, = X;+-- -+ X,,.

Then S, is a martingale in L?. The quadratic variation is (S), = >\, o7.

Theorem 2 (SLLN for Martingales). Let W be a martingale in L?) null at 0. On the
set {(W)eo = 00}
W,

—2 50 as asn — o0
W)

2.1.1 Proof

Recall (W), = C, = 370 E(WE = Wiy | Fir) = 25 B(Wh = Wi1)? | Fima).
The process (1 + C)~ = (1 e

Consider the martingale transform M = (1 +C)~ ' e W:

)n is bounded between 0 and 1 and is predictable.

n

1

M, =
14+ Cy

k=1

(Wi — Wi-1)

M is a martingale in L. By the previous theorem (Doob’s Convergence), lim M,, exists
if the quadratic variation is bounded. Let A = (M).

Ay =) E((My = My1)? | Fior)
k=1

1 1
Claim 1. A, < — <1.
amm -~ 1+Cy 14+C, —

Proof of claim:

1
B) (Wn - Wn—1)2

(M, — M,1)* = [(ENeAE

Taking conditional expectation:

E(M, — My 1)? | Fr1) = (1 + C) 2E((W,, = Wp1)? | Fuii)
= (14+C)%(C, = Cpy)

< (7)) (G4 D= )
1 1

1+C,, 1+C,



Since ), is non-deacreasing, we sum this up to get the result. Therefore, lim M,, exists

a.s. This implies )

e (W,, — W,_1) converges a.s.

n 1 n
Kronecker’s Lemma: If ) 92— converges (where b, 1 00), then ™ Yoz — 0.

Applying this with z, = W,, — VTIL/n,l (so > z; =W,) and b, = 1+C7}n: If C(w) — o0,

" _ — 0, which implies Wa — 0.

th
1rC, C.

2.2 Large Deviation Estimates (LDE)
Let X3, Xs,... be ii.d. RVs with mean E[X;] = pu. We want to show that for ¢ > 0,

Sh )
]P’(!; — ,u‘ > ¢) decays exponentially fast to 0 as n — 0.

2.2.1 Bernstein’s Trick / Chernoff Bounding Technique

For t > 0:
X >\ < tX >\ < X >

By Markov’s inequality:

E[etX]

P(X > A) =P(c™ > ™) < =5

Applying to S,:
P(S, > ne) < e R[]

Using independence: E[e*%"] = (E[e!X1])™ = (M (t))" = e™®), where M (t) is the moment
generating function and ¢(t) = log M (t) is the cumulative generating function.
2.2.2 Maclaurin Series Expansion of The Genrating Function

c(0) =log M(0) =logl =0

d(0) = ]\]\44/(((()))) =E[X] =0 (assuming centered)
(o) = SO EEON _ppx - 2> g
Verify this
We get: ,
c(t) = %tQ +O(t%)
And so:

P(Sn Z TL€) S e—n(ta—c(t)) S e—né(t)
We optimize over ¢t > 0. Let é(¢) = sup,.o(te — ¢(t)). This is the Legendre Transform
2
of ¢(t). Since c¢(t) ~ %t2, we find the optimal rate by finding a local maxima and by the

definition of the function it will be a global maxima.

Theorem 3 (Cramer’s Inequality). Assume X,, has exponential moments (E[e!*] < oo
for some t). Then:

Sy .
— = u’ > 5) < 2¢ele)

(|2

4



Remark: ¢(e) = cpe?. Asymptotically, this is the correct deviation rate (Large
Deviation Principle - LDP).

lim llogIP’ <‘& - ,u’ > 5) = —¢(e)
n—oo N n
2.3 Hoeffding Inequalities

Let Xi,...,X, be independent (not necessarily identically distributed) RVs such that
X; € [a;,b;] a.s. Then:
(

where K = 3" (b — a;)*. In particular, if | X;| < L a.s., then K = n(2L)? = 4L*n, and:

2'n252

>€)§26 K

g[S

n n

2

P(...) < 2e 22
Lemma 2 (Hoeffding). If X is a centered RV in [a, b], then:
E[etX] < 6t2(b—a)2/8

Proof Sketch of Lemma. Since z +— €'® is convex:

b—X X —a
tX < ta tb
R b—a
Taking expectations (with E[X] = 0) yields the result. O



