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1 The Moment Method and the LLN

1.1 Weak Law of Large Numbers (WLLN)

Let X1, X2, . . . , Xn, . . . be i.i.d. random variables. Assume σ2 = E[X2
1 ] <∞ and E[X1] =

0.
Then, for any ε > 0:

P
(∣∣∣∣Snn

∣∣∣∣ > ε

)
≤ 1

n

σ2

ε2
→ 0

Proof (p = 2). Using Chebyshev’s inequality:

P(|Sn| > nε) ≤ E[S2
n]

n2ε2
=
nσ2

n2ε2
=

σ2

nε2
→ 0

Recall that for Sn =
∑n

i=1Xi:

S2
n =

n∑
i=1

X2
i +

∑
i 6=j

XiXj

Taking expectations (using independence and E[Xi] = 0):

E[S2
n] =

n∑
i=1

E[X2
i ] +

∑
i 6=j

E[Xi]E[Xj] = nE[X2
1 ] = nσ2

1.2 Connection between Convergence in Probability and A.S.

Lemma 1. If Xn → X in probability at a rate
∑
rn <∞, i.e.,

P(|Xn −X| > ε) ≤ rn where
∑

rn <∞,

then Xn → X almost surely (a.s.).

Exercise 1. Proof. Hint: Use Borel-Cantelli lemma. If
∑

P(En) <∞, then P(lim supEn) =
0 (meaning En happens infinitely often with probability 0).
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1.3 Strong Law of Large Numbers (SLLN) with 4th Moment

Theorem 1 (SLLN). If E[X4] <∞ (and E[Xi] = 0), then
Sn
n
→ 0 a.s.

Proof. We use the 4th moment method and Markov’s inequality:

P(|Sn| ≥ nε) ≤ E[S4
n]

n4ε4

Expanding S4
n = (

∑n
i=1Xi)

4:

S4
n =

n∑
i=1

X4
i +

∑
i,j,k,l

indices distinct

XiXjXkXl +
∑
i 6=j

X2
iX

2
j + . . .

When taking the expectation E[S4
n], any term with a singleton index (like Xi, X

3
iXj, etc.)

vanishes because E[Xi] = 0. The only surviving terms are of the form X4
i and X2

iX
2
j .

E[S4
n] = nE[X4

1 ] + 3n(n− 1)(E[X2
1 ])2

Thus, E[S4
n] ≤ Cn2. Substituting this back into the probability bound:

P
(∣∣∣∣Snn

∣∣∣∣ ≥ ε

)
≤ Cn2

n4ε4
= O

(
1

n2

)

Since
∑ 1

n2
<∞, by the Borel-Cantelli lemma (or the previous Lemma),

Sn
n
→ 0 a.s.

1.4 Remark on Truncation

The WLLN and SLLN actually hold with just E|X| <∞. To derive this stronger version,
we use truncation. Let M > 0. Define:

X = XI{|X|≤M} +XI{|X|>M} = X≤M +X>M

We use the fact that:

P(|X| > M) ≤ E|X|
M

and E[X>M ] relates to the tail probabilities.
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2 Martingales and Large Deviations

2.1 SLLN for Martingales in L2

Recall: Let M = (Mn)n be a martingale. Let W = (Wn)n be a martingale, null at
0 (W0 = 0). Under an appropriate scaling, we analyze the structure. We have the
decomposition W 2 = P + C, where:

• P is a martingale.

• C = 〈W 〉 is the Predictable Increasing Process (Quadratic Variation).

Example 1. Let (Xn) be independent RVs in L2 with E[Xi] = 0. Let Sn = X1+· · ·+Xn.
Then Sn is a martingale in L2. The quadratic variation is 〈S〉n =

∑n
i=1 σ

2
i .

Theorem 2 (SLLN for Martingales). Let W be a martingale in L2, null at 0. On the
set {〈W 〉∞ =∞}:

Wn

〈W 〉n
→ 0 a.s. as n→∞

2.1.1 Proof

Recall 〈W 〉n = Cn =
∑n

k=1 E(W 2
k −W 2

k−1 | Fk−1) =
∑n

k=1 E((Wk −Wk−1)
2 | Fk−1).

The process (1 + C)−1 = (
1

1 + Cn
)n is bounded between 0 and 1 and is predictable.

Consider the martingale transform M = (1 + C)−1 •W :

Mn =
n∑
k=1

1

1 + Ck
(Wk −Wk−1)

M is a martingale in L2. By the previous theorem (Doob’s Convergence), limMn exists
if the quadratic variation is bounded. Let A = 〈M〉.

An =
n∑
k=1

E((Mk −Mk−1)
2 | Fk−1)

Claim 1. An ≤
1

1 + C0

− 1

1 + Cn
≤ 1.

Proof of claim:

(Mn −Mn−1)
2 =

1

(1 + Cn)2
(Wn −Wn−1)

2

Taking conditional expectation:

E((Mn −Mn−1)
2 | Fn−1) = (1 + Cn)−2E((Wn −Wn−1)

2 | Fn−1)
= (1 + Cn)−2(Cn − Cn−1)

≤
( 1

1 + Cn

)( 1

1 + Cn−1

)[
(Cn + 1)− (Cn−1 + 1)

]
=

1

1 + Cn−1
− 1

1 + Cn
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Since Cn is non-deacreasing, we sum this up to get the result. Therefore, limMn exists

a.s. This implies
∑

n

1

1 + Cn
(Wn −Wn−1) converges a.s.

Kronecker’s Lemma: If
∑ xn

bn
converges (where bn ↑ ∞), then

1

bn

∑n
i=1 xi → 0.

Applying this with xn = Wn−Wn−1 (so
∑
xi = Wn) and bn = 1+Cn: If Cn(ω)→∞,

then
Wn

1 + Cn
→ 0, which implies

Wn

Cn
→ 0.

2.2 Large Deviation Estimates (LDE)

Let X1, X2, . . . be i.i.d. RVs with mean E[X1] = µ. We want to show that for ε > 0,

P(
∣∣Sn
n
− µ

∣∣ > ε) decays exponentially fast to 0 as n→∞.

2.2.1 Bernstein’s Trick / Chernoff Bounding Technique

For t > 0:
X ≥ λ ⇐⇒ tX ≥ tλ ⇐⇒ etX ≥ etλ

By Markov’s inequality:

P(X ≥ λ) = P(etX ≥ etλ) ≤ E[etX ]

etλ

Applying to Sn:
P(Sn ≥ nε) ≤ e−tnεE[etSn ]

Using independence: E[etSn ] = (E[etX1 ])n = (M(t))n = enc(t), where M(t) is the moment
generating function and c(t) = logM(t) is the cumulative generating function.

2.2.2 Maclaurin Series Expansion of The Genrating Function

c(0) = logM(0) = log 1 = 0

c′(0) =
M ′(0)

M(0)
= E[X] = 0 (assuming centered)

c′′(0) =
M ′′(0)M(0)− (M ′(0))2

M(0)2
= E[X2] = σ2 > 0︸ ︷︷ ︸

Verify this

We get:

c(t) =
σ2

2
t2 +O(t3)

And so:
P(Sn ≥ nε) ≤ e−n(tε−c(t)) ≤ e−nc̃(t)

We optimize over t > 0. Let c̃(ε) = supt>0(tε− c(t)). This is the Legendre Transform

of c(t). Since c(t) ∼ σ2

2
t2, we find the optimal rate by finding a local maxima and by the

definition of the function it will be a global maxima.

Theorem 3 (Cramer’s Inequality). Assume Xn has exponential moments (E[etX ] < ∞
for some t). Then:

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
≤ 2e−nc̃(ε)
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Remark: c̃(ε) ≈ c0ε
2. Asymptotically, this is the correct deviation rate (Large

Deviation Principle - LDP).

lim
n→∞

1

n
logP

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
= −c̃(ε)

2.3 Hoeffding Inequalities

Let X1, . . . , Xn be independent (not necessarily identically distributed) RVs such that
Xi ∈ [ai, bi] a.s. Then:

P
(∣∣∣∣Snn − E

[
Sn
n

]∣∣∣∣ > ε

)
≤ 2e−

2n2ε2

K

where K =
∑n

i=1(bi− ai)2. In particular, if |Xi| ≤ L a.s., then K = n(2L)2 = 4L2n, and:

P(. . . ) ≤ 2e−
nε2

2L2

Lemma 2 (Hoeffding). If X is a centered RV in [a, b], then:

E[etX ] ≤ et
2(b−a)2/8

Proof Sketch of Lemma. Since x 7→ etx is convex:

etX ≤ b−X
b− a

eta +
X − a
b− a

etb

Taking expectations (with E[X] = 0) yields the result.
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