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1 Large Deviation Estimates (LDE) for Martingales

1.1 Recall: Hoeffding’s Inequality

Let (Xn)n be a sequence of i.i.d. random variables with finite exponential moments. Then
∀ε > 0, there exists c̃(ε) such that:

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
≤ 2e−nc̃(ε)

where c̃(ε) = supt>0(tε − c(t)) is the Lagendre transform of c(t), and c(t) = logM(t) is
the cumulant generating function, with M(t) = E[etX ].

Theorem 1 (Hoeffding’s Inequality). Assume X1, . . . , Xn are independent with Xi ∈
[ai, bi]. Let Sn =

∑
Xi and µ = E[Sn/n]. Then:

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
≤ 2e−

2n2ε2

k

where k =
∑n

i=1(bi − ai)2.

Lemma 1 (Hoeffding’s Lemma). If X is a random variable such that X ∈ [a, b] a.s. and
E[X] = 0, then:

E[etX ] ≤ e
t2(b−a)2

8

Moreover if F0 is a sub σ-algebra then

E[etX |F0] ≤ e
t2(b−a)2

8

2 Azuma-Hoeffding Inequality

Theorem 2 (Azuma-Hoeffding). Let M = (Mn)n≥0 be a martingale (with respect to a
filtration Fn) such that E[Mn] <∞. Assume the increments are bounded, i.e., there exist
constants cn such that:

|Mn −Mn−1| ≤ cn a.s. ∀n

Then for any ε > 0:

P(|Mn −M0| > ε) ≤ 2e

(
−ε2

2
∑n
i=1

c2
i

)

1



2.1 Martingale Differences

A martingale difference sequence (Xn) satisfies E[Xn|Fn−1] = 0.

(a) If (Mn) is a martingale, define Xn = Mn −Mn−1 (with X0 = 0). Then (Xn) is a
martingale difference.

(b) Conversely, if (Xn) is a martingale difference, null at 0, then Mn =
∑n

i=1Xi is a
martingale.

Theorem 3 (Azuma-Hoeffding Difference Version). If (Xn) is a martingale difference
sequence with |Xn| ≤ cn a.s., then:

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ 2e

(
−t2

2
∑n
i=1

c2
i

)

2.2 Proof of Azuma-Hoeffding

Let Xn = Mn−Mn−1. We have Mn−M0 =
∑n

i=1Xi. We want to bound P(Mn−M0 > λ).
Using the Chernoff bound technique:

P(Mn −M0 > λ) ≤ e−tλE[et(Mn−M0)]

Decompose the expectation:

E[et(Mn−M0)] = E
[
et(Mn−1−M0) · etXn

]
Use the tower property of conditional expectation (conditioning on Fn−1):

E
[
et(Mn−1−M0)E[etXn|Fn−1]

]
Since |Xn| ≤ cn and E[Xn|Fn−1] = 0, by Hoeffding’s Lemma (applied conditionally):

E[etXn|Fn−1] ≤ e
t2(2cn)2

8 = e
t2c2n
2

Iterating this process backwards from n to 1:

E[et(Mn−M0)] ≤
n∏
i=1

e
t2c2i
2 = e

t2

2

∑
c2i

Optimizing over t yields the result.

3 McDiarmid’s Inequality

LetX1, . . . , Xn be independent random variables taking values in a set X . Let f : X n → R
be a function satisfying the Bounded Difference Property:

sup
x1,...,xn,x′i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci

for all 1 ≤ i ≤ n. Then:

P(|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| > ε) ≤ 2e

(
−2ε2∑n
i=1

c2
i

)

Remark 1. Hoeffding inequality is deducable from McDiarmid by taking

f(x1, . . . , xn) =
1

n

n∑
i=1

xi
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3.1 Proof of McDiarmid

Let Fi = σ(X1, . . . , Xi) for 1 ≤ i ≤ n, and F0 = {∅,Ω}. Define the Doob Martingale:

Mi = E[f(X1, . . . , Xn)|Fi]

• M0 = E[f(X)]

• Mn = f(X) (since f(X) is Fn-measurable)

We must show the increments are bounded.

Mi −Mi−1 = E[f(X)|Fi]− E[f(X)|Fi−1]

Let X(i) = (X1, . . . , X
′
i, . . . , Xn) where X ′i is an independent copy of Xi.

|Mi −Mi−1| ≤ sup |f(x)− f(x′)| ≤ ci

Applying Azuma-Hoeffding to Mn yields the result.

4 Application: Balls into Bins

Consider throwing n balls into m bins uniformly at random. Let Zn,m be the number of
empty bins. We want a good estimate for E[Zn,m] and concentration around the mean.

Let 1Bi be the indicator that bin i is empty.

Zn,m =
m∑
i=1

1Bi

Expectation:

E[Zn,m] =
m∑
i=1

P(Bin i is empty) = m

(
1− 1

m

)n
≈ me−n/m

To use McDiarmid’s inequality, let Xk be the index of the bin where the k-th ball falls
(1 ≤ k ≤ n). X1, . . . , Xn are i.i.d. variables. We can write Zn,m = f(X1, . . . , Xn).
Changing one ball’s position (one Xk) can change the number of empty bins by at most
1. Thus, the bounded difference condition holds with ck = 1.

n∑
k=1

c2k = n

By McDiarmid:

P(|Zn,m − E[Zn,m]| > ε) ≤ 2e−
2ε2

n

5 Central Limit Theorem (CLT)

Let X1, X2, . . . be i.i.d. random variables with E[Xi] = µ and Var(Xi) = σ2 < ∞.
Assume µ = 0, σ2 = 1 for simplicity. Let Sn =

∑n
i=1Xi.
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5.1 Comparison with WLLN

By the Weak Law of Large Numbers (WLLN):

Sn
n

p−→ 0

This implies Sn = o(n) with high probability. Question: What is the typical size of Sn?
Answer: Sn = O(

√
n).

By Chebyshev’s Inequality:

P
(∣∣∣∣ Sn√n

∣∣∣∣ > λ

)
≤ Var(Sn/

√
n)

λ2
=

1

λ2

Since Var(Sn/
√
n) =

1

n

∑
Var(Xi) = 1.

5.2 Convergence Questions

Does
Sn√
n

converge almost surely or in probability to a random variable? Answer: No.

Proposition 1. Let Xi be i.i.d. with mean 0 and variance 1. Then
Sn√
n

does not converge

almost surely (nor in probability) to any random variable.

Proof Sketch. Assume by contradiction that
Sn√
n
→ Y almost surely. Then (

Sn√
n

)2 → Y 2

a.s. Since the variances are uniformly bounded, by the Bounded Moment Convergence

Theorem (BMCT), E[(
Sn√
n

)2]→ E[Y 2]. We know E[(
Sn√
n

)2] = 1, so E[Y 2] = 1.

However, Y must be measurable with respect to the tail σ-algebra

T =
⋂
n≥1

σ(Xn, Xn+1, . . . )

By Kolmogorov’s 0-1 Law, Y must be constant almost surely. Since E[Y ] = limE[Sn/
√
n] =

0, we must have Y = 0 a.s. This implies E[Y 2] = 0, which contradicts E[Y 2] = 1.

5.3 Statement of CLT

Although it does not converge in probability,
Sn√
n

converges in distribution to the stan-

dard normal distribution N (0, 1).

lim
n→∞

P
(
Sn√
n
∈ [a, b]

)
=

∫ b

a

1√
2π
e−x

2/2 dx
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