Probability Lecture Notes

December 10

1 Large Deviation Estimates (LDE) for Martingales

1.1 Recall: Hoeffding’s Inequality

Let (X,,), be a sequence of i.i.d. random variables with finite exponential moments. Then
Ve > 0, there exists ¢(¢) such that:
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where ¢(€) = sup,.(te — ¢(t)) is the Lagendre transform of ¢(t), and c(t) = log M (t) is
the cumulant generating function, with M (t) = E[e™].

Theorem 1 (Hoeffding’s Inequality). Assume Xi,..., X, are independent with X; €
la;, b;]. Let S, => X, and p = E[S,/n]. Then:

"

Lemma 1 (Hoeffding’s Lemma). If X is a random variable such that X € [a,b] a.s. and
E[X] =0, then:
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where k= >"1"  (b; — a;).
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Moreover if Fy is a sub o-algebra then
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E[eX|F) <e s

2 Azuma-Hoeffding Inequality

Theorem 2 (Azuma-Hoeffding). Let M = (M, )n>0 be a martingale (with respect to a
filtration F,,) such that E[M,] < co. Assume the increments are bounded, i.e., there exist

constants c,, such that:
|M,, — M,—1| < ¢, as. Vn
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2.1 Martingale Differences

A martingale difference sequence (X,,) satisfies E[X,,|F,,—1] = 0.
(a) If (M,) is a martingale, define X,, = M,, — M,,_; (with Xy = 0). Then (X,,) is a
martingale difference.
(b) Conversely, if (X)) is a martingale difference, null at 0, then M, = " X, is a
martingale.

Theorem 3 (Azuma-Hoeffding Difference Version). If (X,,) is a martingale difference
sequence with | X,| < ¢, a.s., then:
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2.2 Proof of Azuma-Hoeffding

Let X,, = M,,—M,_;. We have M,,— M, = >""" | X;. We want to bound P(M,,— M, > X).
Using the Chernoff bound technique:

P(M, — My > \) < e” AE[e!(Mn—Mo)]

Decompose the expectation:

E[et(M"_MO)] =F [et(M"”_MO) . etX"}
Use the tower property of conditional expectation (conditioning on F,_1):
E [et(M”‘l_MO)]E[etX"|.7:n_1H
Since | X, | < ¢, and E[X,|F,_1] = 0, by Hoeffding’s Lemma (applied conditionally):
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Iterating this process backwards from n to 1:
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Optimizing over t yields the result.

3 McDiarmid’s Inequality

Let X1,..., X, beindependent random variables taking values in aset X. Let f : A" — R
be a function satisfying the Bounded Difference Property:

sup /|f(x1,...,xi,...,xn)—f(xl,...,xg,...,xnﬂ <g¢
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for all 1 <7 <n. Then:
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Remark 1. Hoeffding inequality is deducable from McDiarmid by taking
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3.1 Proof of McDiarmid
Let F; = o(Xy,...,X;) for 1 <i < n, and Fy = {0, Q}. Define the Doob Martingale:
M; =E[f(Xy,...,X,)|F]

o My =E[f(X)]

o M, = f(X) (since f(X) is F,,-measurable)
We must show the increments are bounded.

M; — My = E[f(X)|F] — E[f(X)|Fi-1]
Let X® = (X1,...,X/,...,X,) where X/ is an independent copy of Xj.
| M; — Mi—1| < sup|f(z) — f(&)] <

Applying Azuma-Hoeffding to M, yields the result.

4 Application: Balls into Bins

Consider throwing n balls into m bins uniformly at random. Let Z,, ,, be the number of
empty bins. We want a good estimate for E[Z,, ,,] and concentration around the mean.
Let 15, be the indicator that bin ¢ is empty.

Zn,m = in: 1Bi
i=1

Expectation:

m 1 n
E[Znm) =Y P(Bin i is empty) = m (1 _ _) ~ e/
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To use McDiarmid’s inequality, let X be the index of the bin where the k-th ball falls
(1 <k <n) Xi,...,X, are i.i.d. variables. We can write Z,,, = f(X1,...,X,).
Changing one ball’s position (one X}) can change the number of empty bins by at most
1. Thus, the bounded difference condition holds with ¢, = 1.
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By McDiarmid:
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P(| Znm — E[Zum]| > €) < 2e™

5 Central Limit Theorem (CLT)

Let Xi, Xs,... be i.id. random variables with E[X;] = p and Var(X;) = 0% < oc.
Assume p = 0,0% = 1 for simplicity. Let S, = " | X;.



5.1 Comparison with WLLN
By the Weak Law of Large Numbers (WLLN):
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This implies S,, = o(n) with high probability. Question: What is the typical size of S,?
Answer: S, = O(y/n).
By Chebyshev’s Inequality:
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5.2 Convergence Questions

S,
Does —= converge almost surely or in probability to a random variable? Answer: No.
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Proposition 1. Let X; be i.i.d. with mean 0 and variance 1. Then T does not converge
n

almost surely (nor in probability) to any random variable.
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Proof Sketch. Assume by contradiction that —= — Y almost surely. Then (—=)? — Y
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a.s. Since the variances are uniformly bounded, by the Bounded Moment Convergence
Sn S
Theorem (BMCT), E[(%)Q] — E[Y?]. We know E[(%y] =1, s0 E[Y?] = 1.

However, Y must be measurable with respect to the tail o-algebra

T = ﬂO'(Xn,Xn+1,...)

n>1

By Kolmogorov’s 0-1 Law, ¥ must be constant almost surely. Since E[Y] = limE[S,,/v/n ]
0, we must have Y = 0 a.s. This implies E[Y?] = 0, which contradicts E[Y?] = 1.

5.3 Statement of CLT

™ converges in distribution to the stan-
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Although it does not converge in probability,
dard normal distribution N (0, 1).
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