

Probability Lecture Notes

December 11

1 Basic Notions

1.1 Distribution of a Random Variable

Let $X : \Omega \rightarrow \mathbb{R}$ be a random variable. We consider $\mu_X \in \text{Prob}(\mathbb{R})$, defined as:

$$\mu_X(A) := \mathbb{P}(X \in A)$$

We say that X and Y are equal in distribution (or in Law), denoted $X \stackrel{d}{=} Y$, if and only if $\mu_X = \mu_Y$.

Remark 1. $X \stackrel{d}{=} Y \iff \mu_X((-\infty, t]) = \mu_Y((-\infty, t])$ for all $t \in \mathbb{R}$.

This is because the set system $\{(-\infty, a] : a \in \mathbb{R}\}$ is a π -system that generates the Borel σ -algebra $\mathcal{B}(\mathbb{R})$.

1.2 Change of Variables Formula

For a continuous function f :

$$\mathbb{E}[f(X)] = \int_{\mathbb{R}} f(t) d\mu_X(t)$$

2 Cumulative Distribution Function (CDF)

For a probability measure $\mu \in \text{Prob}(\mathbb{R})$, the CDF is a function $F_{\mu} : \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$F_{\mu}(t) = \mu((-\infty, t])$$

For a random variable X :

$$F_X(t) = \mathbb{P}(X \leq t) = F_{\mu_X}(t)$$

2.1 Properties of the CDF

The CDF of a probability measure on \mathbb{R} (or of a random variable) is a function $F : \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

1. $0 \leq F(t) \leq 1$.
2. F is non-decreasing.

3. Limits at infinity:

$$\lim_{t \rightarrow -\infty} F(t) = 0, \quad \lim_{t \rightarrow \infty} F(t) = 1$$

4. F is right-continuous:

$$\lim_{x \searrow a} F(x) = F(a)$$

Remark 2. F is continuous at $a \in \mathbb{R}$ if and only if $\mu(\{a\}) = 0$. This follows from the Monotone Convergence Theorem applied to sets:

$$\lim_{x \nearrow a} \mu((-\infty, x]) = \mu((-\infty, a)) \iff \mu(\{a\}) = 0$$

Therefore, F_μ is continuous at $a \iff \mu(\{a\}) = 0$.

Remark 3. Since F is monotone, it has at most a countable set of discontinuities. Moreover, it is differentiable almost everywhere (a.e.).

Theorem 1. Given $F : \mathbb{R} \rightarrow \mathbb{R}$ satisfying properties 2-4, there exists a unique $\mu \in \text{Prob}(\mathbb{R})$ such that $\mu((-\infty, t]) = F(t)$. Therefore, there is a bijection between CDFs and Borel probability measures on \mathbb{R} .

3 Density Functions

Let μ_X be the distribution of a random variable. If $\mu_X \ll \lambda$ (absolute continuity with respect to the Lebesgue measure λ on \mathbb{R}), then by the Radon-Nikodym theorem, there exists a function $f_X \geq 0$ such that:

$$d\mu_X = f_X d\lambda \quad (\text{or } d\mu_X = f_X(x) dx)$$

and $\int_{\mathbb{R}} f_X(x) dx = 1$. This implies:

$$\forall E \in \mathcal{B}(\mathbb{R}), \quad \mu_X(E) = \int_E f_X(x) dx$$

In this case, f_X is called the **Probability Density Function (PDF)** of X . If $\mu_X \ll \lambda$, then $F'_X = f_X$ almost surely (CDF' = PDF).

3.1 Examples of Distributions

3.1.1 Continuous Uniform Distribution

Measure: $d\mu = \mathbb{I}_{[0,1]} dx$.

PDF: $f(t) = \mathbb{I}_{[0,1]}(t)$.

CDF:

$$F(t) = \mu((-\infty, t]) = \begin{cases} 0 & t < 0 \\ t & t \in [0, 1] \\ 1 & t > 1 \end{cases}$$

" X is drawn uniformly from $[0, 1]$ ". Similarly for uniform distribution on $[a, b]$, the density is $\frac{1}{b-a} \mathbb{I}_{[a,b]}$.

3.1.2 Bernoulli Distribution

Bernoulli(p) is the distribution of a RV with two values $\{a, b\}$ where $\mathbb{P}(X = a) = p$ and $\mathbb{P}(X = b) = 1 - p$.

$$\mu = p\delta_a + (1 - p)\delta_b \quad (\text{Dirac measures})$$

This distribution has no density with respect to Lebesgue measure. Its CDF is a step function.

3.1.3 Poisson Distribution

Poisson(λ) is the distribution of a RV taking values in $\{0, 1, 2, \dots\}$.

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

This is a discrete measure: $\mu = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} \delta_k$. It has no PDF with respect to Lebesgue measure.

3.1.4 Standard Normal Distribution $N(0, 1)$

PDF:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

CDF:

$$F(t) = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Exercise 1. If $X \sim N(0, 1)$, show that $\mathbb{E}[X] = 0$ and $\text{Var}(X) = 1$.

Generally, for $N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

4 Convergence in Distribution

Let $(S, \mathcal{B}(S))$ be a metric space with the Borel σ -algebra.

Definition 1. Let $\{\mu_n\} \subset \text{Prob}(S)$ and $\mu \in \text{Prob}(S)$. We say $\mu_n \rightarrow \mu$ **weakly** if:

$$\int_S g d\mu_n \rightarrow \int_S g d\mu$$

for all $g \in C_b(S)$, where $C_b(S) = \{h : S \rightarrow \mathbb{R} \mid h \text{ is continuous and bounded}\}$. Note: $\|g\|_{\infty} = \sup_{x \in S} |g(x)|$.

Exercise 2. If weakly $\mu_n \rightarrow \mu$ and weakly $\mu_n \rightarrow d$ then $\mu = d$

Definition 2. We say that a sequence of random variables $\{X_n\}$ converges **in distribution** (or in Law) to a random variable X , written $X_n \xrightarrow{d} X$ (or $X_n \Rightarrow X$), if $\mu_{X_n} \rightarrow \mu_X$ weakly.

Remark 4. $X_n \xrightarrow{d} X \iff \mathbb{E}[g(X_n)] \rightarrow \mathbb{E}[g(X)]$ for all $g \in C_b(\mathbb{R})$. (By a change of variables)

5 Portmanteau Theorem

Theorem 2 (Portmanteau Theorem). *Let $(S, \mathcal{B}(S))$ be a metric space. Let $\{\mu_n\} \subset \text{Prob}(S)$ and $\mu \in \text{Prob}(S)$. The following are equivalent:*

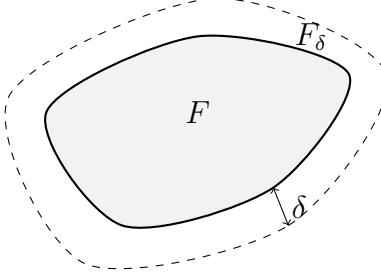
1. $\mu_n \rightarrow \mu$ weakly ($\int g d\mu_n \rightarrow \int g d\mu, \forall g \in C_b(S)$).
2. $\int g d\mu_n \rightarrow \int g d\mu$ for all g bounded and uniformly continuous (or Lipschitz).
3. $\limsup_{n \rightarrow \infty} \mu_n(F) \leq \mu(F)$ for all closed sets $F \subset S$.
4. $\liminf_{n \rightarrow \infty} \mu_n(G) \geq \mu(G)$ for all open sets $G \subset S$.
5. $\lim_{n \rightarrow \infty} \mu_n(A) = \mu(A)$ for all Borel sets A with $\mu(\partial A) = 0$ (such sets are called μ -continuity sets).

5.1 Proof of the Portmanteau Theorem

Proof (1) \implies (2): Trivial, since Lipschitz functions are continuous and bounded.

Proof (2) \implies (3): Let F be a closed set. We approximate F from above. Let $\epsilon > 0$. Define $F_\delta := \{x \in S : d(x, F) < \delta\}$ where $d(x, F) = \inf_{y \in F} d(x, y)$. Note that $x \mapsto d(x, F)$ is Lipschitz. Since F is closed, $d(x, F) = 0 \iff x \in F$.

We construct a function g_δ to approximate the indicator \mathbb{I}_F .



Define $g_\delta : S \rightarrow \mathbb{R}$ by:

$$g_\delta(x) = \left(1 - \frac{d(x, F)}{\delta}\right)^+$$

where $a^+ = \max(a, 0)$. Properties of g_δ :

- g_δ is Lipschitz (composition of Lipschitz functions).
- $0 \leq g_\delta \leq 1$.
- On F , $d(x, F) = 0 \implies g_\delta(x) = 1$. Thus $\mathbb{I}_F \leq g_\delta$.
- On F_δ^c , $d(x, F) \geq \delta \implies g_\delta(x) = 0$. Thus $g_\delta \leq \mathbb{I}_{F_\delta}$.

So, $\mathbb{I}_F \leq g_\delta \leq \mathbb{I}_{F_\delta}$.

Since F is closed, as $\delta \rightarrow 0$, $F_\delta \downarrow F$. By continuity of measure from above (using $\bigcap F_{\delta_k} = F$), we have $\mu(F_\delta) \rightarrow \mu(F)$. Choose δ such that $\mu(F_\delta) < \mu(F) + \epsilon$.

Then:

$$\mu_n(F) = \int \mathbb{I}_F d\mu_n \leq \int g_\delta d\mu_n$$

Taking limit sup:

$$\limsup_{n \rightarrow \infty} \mu_n(F) \leq \lim_{n \rightarrow \infty} \int g_\delta d\mu_n = \int g_\delta d\mu \leq \int \mathbb{I}_{F_\delta} d\mu = \mu(F_\delta) < \mu(F) + \epsilon$$

Since ϵ is arbitrary, $\limsup \mu_n(F) \leq \mu(F)$.

Proof (3) \iff (4): By taking complements. Open $G = F^c$. $\mu_n(G) = 1 - \mu_n(F)$.

$$\liminf \mu_n(G) = 1 - \limsup \mu_n(F) \geq 1 - \mu(F) = \mu(G).$$

Proof (3) + (4) \implies (5): Let A be a Borel set with $\mu(\partial A) = 0$. Recall $\partial A = \overline{A} \setminus A^\circ$ and $A^\circ \subset A \subset \overline{A}$. Since $\mu(\partial A) = 0$, $\mu(\overline{A}) = \mu(A^\circ) = \mu(A)$.

$$\begin{aligned} \limsup \mu_n(A) &\leq \limsup \mu_n(\overline{A}) \leq \mu(\overline{A}) = \mu(A) \\ \liminf \mu_n(A) &\geq \liminf \mu_n(A^\circ) \geq \mu(A^\circ) = \mu(A) \end{aligned}$$

Thus, $\mu_n(A) \rightarrow \mu(A)$.

Proof (5) \implies (1): We use the layer cake representation.

Lemma 1. If $f \in L^1(S, \mu)$ and $f \geq 0$, then $\int_S f d\mu = \int_0^\infty \mu(\{f > t\}) dt$.

Let $g \in C_b(S)$. Since g is bounded ($m \leq g \leq M$), we can look at $g - m \geq 0$. So assume without loss of generality that $g \geq 0$.

$$\int g d\mu_n = \int_0^\infty \mu_n(\{g > t\}) dt$$

The set $A_t = \{g > t\}$ has boundary $\partial A_t \subset \{g = t\}$. We need $\mu(\partial A_t) = 0$ for condition (5) to apply. It is sufficient to show $\mu(\{g = t\}) = 0$.

Exercise 3. The set of $t \in \mathbb{R}$ such that $\mu(\{g = t\}) > 0$ is at most countable.

Since the set of atoms is countable, for almost every t (with respect to Lebesgue measure), $\mu(\{g = t\}) = 0$. Thus, for a.e. t , $\mu_n(\{g > t\}) \rightarrow \mu(\{g > t\})$. By the Dominated Convergence Theorem (since measures are bounded by 1),

$$\int_0^\infty \mu_n(\{g > t\}) dt \rightarrow \int_0^\infty \mu(\{g > t\}) dt \implies \int g d\mu_n \rightarrow \int g d\mu.$$