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1 Basic Notions

1.1 Distribution of a Random Variable

Let X : Ω→ R be a random variable. We consider µX ∈ Prob(R), defined as:

µX(A) := P(X ∈ A)

We say that X and Y are equal in distribution (or in Law), denoted X d
= Y , if and only

if µX = µY .

Remark 1. X d
= Y ⇐⇒ µX((−∞, t]) = µY ((−∞, t]) for all t ∈ R.

This is because the set system {(−∞, a] : a ∈ R} is a π-system that generates the Borel
σ-algebra B(R).

1.2 Change of Variables Formula

For a continuous function f :

E[f(X)] =

∫
R
f(t) dµX(t)

2 Cumulative Distribution Function (CDF)
For a probability measure µ ∈ Prob(R), the CDF is a function Fµ : R→ R defined by:

Fµ(t) = µ((−∞, t])

For a random variable X:
FX(t) = P(X ≤ t) = FµX (t)

2.1 Properties of the CDF

The CDF of a probability measure on R (or of a random variable) is a function F : R→ R
satisfying:

1. 0 ≤ F (t) ≤ 1.

2. F is non-decreasing.
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3. Limits at infinity:
lim
t→−∞

F (t) = 0, lim
t→∞

F (t) = 1

4. F is right-continuous:
lim
x↘a

F (x) = F (a)

Remark 2. F is continuous at a ∈ R if and only if µ({a}) = 0. This follows from the
Monotone Convergence Theorem applied to sets:

lim
x↗a

µ((−∞, x]) = µ((−∞, a)) ⇐⇒ µ({a}) = 0

Therefore, Fµ is continuous at a ⇐⇒ µ({a}) = 0.

Remark 3. Since F is monotone, it has at most a countable set of discontinuities.
Moreover, it is differentiable almost everywhere (a.e.).

Theorem 1. Given F : R → R satisfying properties 2–4, there exists a unique µ ∈
Prob(R) such that µ((−∞, t]) = F (t). Therefore, there is a bijection between CDFs and
Borel probability measures on R.

3 Density Functions
Let µX be the distribution of a random variable. If µX � λ (absolute continuity with
respect to the Lebesgue measure λ on R), then by the Radon-Nikodym theorem, there
exists a function fX ≥ 0 such that:

dµX = fX dλ (or dµX = fX(x)dx)

and
∫
R fX(x)dx = 1. This implies:

∀E ∈ B(R), µX(E) =

∫
E

fX(x)dx

In this case, fX is called the Probability Density Function (PDF) of X. If µX � λ,
then F ′X = fX almost surely (CDF’ = PDF).

3.1 Examples of Distributions

3.1.1 Continuous Uniform Distribution

Measure: dµ = I[0,1]dx.
PDF: f(t) = I[0,1](t).
CDF:

F (t) = µ((−∞, t]) =


0 t < 0

t t ∈ [0, 1]

1 t > 1

"X is drawn uniformly from [0, 1]". Similarly for uniform distribution on [a, b], the density
is 1

b−aI[a,b].
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3.1.2 Bernoulli Distribution

Bernoulli(p) is the distribution of a RV with two values {a, b} where P(X = a) = p and
P(X = b) = 1− p.

µ = pδa + (1− p)δb (Dirac measures)

This distribution has no density with respect to Lebesgue measure. Its CDF is a step
function.

3.1.3 Poisson Distribution

Poisson(λ) is the distribution of a RV taking values in {0, 1, 2, . . . }.

P(X = k) =
λk

k!
e−λ

This is a discrete measure: µ =
∑∞

k=0
λk

k!
e−λδk. It has no PDF with respect to Lebesgue

measure.

3.1.4 Standard Normal Distribution N(0, 1)

PDF:
f(x) =

1√
2π
e−

x2

2

CDF:

F (t) =

∫ t

−∞

1√
2π
e−

x2

2 dx

Exercise 1. If X ∼ N(0, 1), show that E[X] = 0 and Var(X) = 1.

Generally, for N(µ, σ2):

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

4 Convergence in Distribution
Let (S,B(S)) be a metric space with the Borel σ-algebra.

Definition 1. Let {µn} ⊂ Prob(S) and µ ∈ Prob(S). We say µn → µ weakly if:∫
S

g dµn →
∫
S

g dµ

for all g ∈ Cb(S), where Cb(S) = {h : S → R | h is continuous and bounded}. Note:
‖g‖∞ = supx∈S |g(x)|.

Exercise 2. If weakly µn → µ and weakly µn → d then µ = d

Definition 2. We say that a sequence of random variables {Xn} converges in distribu-
tion (or in Law) to a random variable X, written Xn

d−→ X (or Xn ⇒ X), if µXn → µX
weakly.

Remark 4. Xn
d−→ X ⇐⇒ E[g(Xn)] → E[g(X)] for all g ∈ Cb(R). (By a change of

variables)
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5 Portmanteau Theorem
Theorem 2 (Portmanteau Theorem). Let (S,B(S)) be a metric space. Let {µn} ⊂
Prob(S) and µ ∈ Prob(S). The following are equivalent:

1. µn → µ weakly (
∫
gdµn →

∫
gdµ,∀g ∈ Cb(S)).

2.
∫
gdµn →

∫
gdµ for all g bounded and uniformly continuous (or Lipschitz).

3. lim supn→∞ µn(F ) ≤ µ(F ) for all closed sets F ⊂ S.

4. lim infn→∞ µn(G) ≥ µ(G) for all open sets G ⊂ S.

5. limn→∞ µn(A) = µ(A) for all Borel sets A with µ(∂A) = 0 (such sets are called
µ-continuity sets).

5.1 Proof of the Portmanteau Theorem

Proof (1) =⇒ (2): Trivial, since Lipschitz functions are continuous and bounded.
Proof (2) =⇒ (3): Let F be a closed set. We approximate F from above. Let

ε > 0. Define Fδ := {x ∈ S : d(x, F ) < δ} where d(x, F ) = infy∈F d(x, y). Note that
x 7→ d(x, F ) is Lipschitz. Since F is closed, d(x, F ) = 0 ⇐⇒ x ∈ F .

We construct a function gδ to approximate the indicator IF .

F

Fδ

δ

Define gδ : S → R by:

gδ(x) =

(
1− d(x, F )

δ

)+

where a+ = max(a, 0). Properties of gδ:

• gδ is Lipschitz (composition of Lipschitz functions).

• 0 ≤ gδ ≤ 1.

• On F , d(x, F ) = 0 =⇒ gδ(x) = 1. Thus IF ≤ gδ.

• On F c
δ , d(x, F ) ≥ δ =⇒ gδ(x) = 0. Thus gδ ≤ IFδ .

So, IF ≤ gδ ≤ IFδ .
Since F is closed, as δ → 0, Fδ ↓ F . By continuity of measure from above (using⋂
Fδk = F ), we have µ(Fδ)→ µ(F ). Choose δ such that µ(Fδ) < µ(F ) + ε.
Then:

µn(F ) =

∫
IF dµn ≤

∫
gδ dµn
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Taking limit sup:

lim sup
n→∞

µn(F ) ≤ lim
n→∞

∫
gδ dµn =

∫
gδ dµ ≤

∫
IFδ dµ = µ(Fδ) < µ(F ) + ε

Since ε is arbitrary, lim supµn(F ) ≤ µ(F ).
Proof (3) ⇐⇒ (4): By taking complements. Open G = F c. µn(G) = 1− µn(F ).

lim inf µn(G) = 1− lim supµn(F ) ≥ 1− µ(F ) = µ(G).

Proof (3) + (4) =⇒ (5): Let A be a Borel set with µ(∂A) = 0. Recall ∂A = A\A◦
and A◦ ⊂ A ⊂ A. Since µ(∂A) = 0, µ(A) = µ(A◦) = µ(A).

lim supµn(A) ≤ lim supµn(A) ≤ µ(A) = µ(A)

lim inf µn(A) ≥ lim inf µn(A◦) ≥ µ(A◦) = µ(A)

Thus, µn(A)→ µ(A).
Proof (5) =⇒ (1): We use the layer cake representation.

Lemma 1. If f ∈ L1(S, µ) and f ≥ 0, then
∫
S
fdµ =

∫∞
0
µ({f > t})dt.

Let g ∈ Cb(S). Since g is bounded (m ≤ g ≤ M), we can look at g − m ≥ 0. So
assume without loss of generality that g ≥ 0.∫

g dµn =

∫ ∞
0

µn({g > t})dt

The set At = {g > t} has boundary ∂At ⊂ {g = t}. We need µ(∂At) = 0 for condition
(5) to apply. It is sufficient to show µ({g = t}) = 0.

Exercise 3. The set of t ∈ R such that µ({g = t}) > 0 is at most countable.

Since the set of atoms is countable, for almost every t (with respect to Lebesgue
measure), µ({g = t}) = 0. Thus, for a.e. t, µn({g > t}) → µ({g > t}). By the
Dominated Convergence Theorem (since measures are bounded by 1),∫ ∞

0

µn({g > t})dt→
∫ ∞
0

µ({g > t})dt =⇒
∫
gdµn →

∫
gdµ.
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