Probability Lecture Notes

December 11

1 Basic Notions

1.1 Distribution of a Random Variable

Let X : Q2 — R be a random variable. We consider puy € Prob(R), defined as:
px(A) :=P(X € A)

We say that X and Y are equal in distribution (or in Law), denoted X < Y, if and only
if px = py.

Remark 1. X £V <« px ((—o0,t]) = py ((—oo,t]) for allt € R.
This is because the set system {(—oo,a] : a € R} is a w-system that generates the Borel

o-algebra B(R).

1.2 Change of Variables Formula

For a continuous function f:

E[f(X)] = / £(t) dux(t)

2 Cumulative Distribution Function (CDF)

For a probability measure p € Prob(R), the CDF is a function F}, : R — R defined by:
Fu(t) = p((—o0,1])

For a random variable X:

2.1 Properties of the CDF

The CDF of a probability measure on R (or of a random variable) is a function F' : R — R
satisfying:

1. 0< F(t) < 1.

2. F' is non-decreasing.



3. Limits at infinity:
lim F(t)=0, lim F(t)=1
t——o0 t—o0
4. F'is right-continuous:
liin F(z) = F(a)

Remark 2. F is continuous at a € R if and only if p({a}) = 0. This follows from the
Monotone Convergence Theorem applied to sets:

lim (=00, 2]) = p((—00,a)) = p({a}) =0

Therefore, F), is continuous at a <= p({a}) = 0.

Remark 3. Since F' is monotone, it has at most a countable set of discontinuities.
Moreover, it is differentiable almost everywhere (a.e.).

Theorem 1. Given F' : R — R satisfying properties 2—4, there exists a unique j €
Prob(R) such that p((—oo,t]) = F(t). Therefore, there is a bijection between CDFs and
Borel probability measures on R.

3 Density Functions

Let pux be the distribution of a random variable. If uy < A (absolute continuity with
respect to the Lebesgue measure A on R), then by the Radon-Nikodym theorem, there
exists a function fx > 0 such that:

dux = fx dX  (or dux = fx(x)dx)

and [, fx()dz = 1. This implies:

VE € BR), px(E) = / fx(x)dz

In this case, fx is called the Probability Density Function (PDF) of X. If uy < A,
then 'y = fx almost surely (CDF’ = PDF).

3.1 Examples of Distributions
3.1.1 Continuous Uniform Distribution

Measure: dp = I 1jdz.

CDF:
0 t<0
F(t) = p((—o0,t]) =4t t€][0,1]
1 t>1

"X is drawn uniformly from [0, 1]". Similarly for uniform distribution on [a, b], the density
1
is 5= Loy



3.1.2 Bernoulli Distribution

Bernoulli(p) is the distribution of a RV with two values {a, b} where P(X = a) = p and
P(X=b)=1—p.
p=pd, + (1 —p)d, (Dirac measures)

This distribution has no density with respect to Lebesgue measure. Its CDF is a step
function.

3.1.3 Poisson Distribution

Poisson(A) is the distribution of a RV taking values in {0,1,2,...}.

YL

oo \k

This is a discrete measure: p =) -, He*)‘ék. It has no PDF with respect to Lebesgue
measure.

3.1.4 Standard Normal Distribution N(0,1)
PDF:

1.2
T) = e 2
P | 2
t) = e 2dx
( ) /_oo v 2T
Exercise 1. If X ~ N(0,1), show that E[X] =0 and Var(X) = 1.

CDF:

Generally, for N(u,0?):

1 _(@—w)?
e 202
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4 Convergence in Distribution

Let (S, B(S)) be a metric space with the Borel o-algebra.
Definition 1. Let {u,} C Prob(S) and p € Prob(S). We say p, — p weakly if:

/gdun%/gdu
S S

for all g € Cy(S), where Cy(S) = {h : S — R | h is continuous and bounded}. Note:
9llec = supes [9(x)].

Exercise 2. If weakly pu, — p and weakly p, — d then p=d

Definition 2. We say that a sequence of random variables {X,,} converges in distribu-

tion (or in Law) to a random variable X, written X, 4 X (or X,, = X ), if ux, — px
weakly.

Remark 4. X, & X < Elg(X,)] — E[g(X)] for all g € Co(R). (By a change of
variables)



5 Portmanteau Theorem

Theorem 2 (Portmanteau Theorem). Let (S,B(S)) be a metric space. Let {u,} C
Prob(S) and p € Prob(S). The following are equivalent:

1. pn, — p weakly ([ gdu, — [ gdp, Vg € Cy(S)).
2. [ gdu, — [ gdu for all g bounded and uniformly continuous (or Lipschitz).
3. limsup,,_, pn(F) < u(F) for all closed sets F C S.
4. iminf, o 1, (G) > u(G) for all open sets G C S.
5. limy, oo pin(A) = p(A) for all Borel sets A with u(0A) = 0 (such sets are called
p-continuity sets).
5.1 Proof of the Portmanteau Theorem

Proof (1) = (2): Trivial, since Lipschitz functions are continuous and bounded.
Proof (2) = (3): Let F be a closed set. We approximate F' from above. Let
€ > 0. Define Fs := {z € S : d(z,F) < 6} where d(z, F) = inf,cpd(z,y). Note that
x +— d(z, F) is Lipschitz. Since F is closed, d(z, F) =0 <= z € F.
We construct a function g5 to approximate the indicator Ip.

Define gs : S — R by:

where a™ = max(a,0). Properties of gs:
e g; is Lipschitz (composition of Lipschitz functions).
e 0<ygs <1
e On F,d(x,F) =0 = gs(x) = 1. Thus [r < gs.
e On Fy, d(z,F) >0 = gs(x) =0. Thus g5 < Ip,.

SO, ]IF S gs S ]IF(;‘
Since F' is closed, as § — 0, F5 | F. By continuity of measure from above (using

() Fs, = F'), we have pu(Fs) — p(F). Choose 0 such that pu(Fs) < p(F) + e.
Then:



Taking limit sup:

lim sup 1, (F) th_ggo/gédﬂn :/gadu < /Hm dp = pu(Fs) < p(F) + €

n—o0

Since € is arbitrary, lim sup pu, (F) < p(F).
Proof (3) <= (4): By taking complements. Open G = F°. (1,,(G) =1 — p,,(F').

liminf 41, (G) = 1 — limsup p,,(F) > 1 — p(F) = u(G).

Proof (3) + (4) = (5): Let A be a Borel set with u(9A4) = 0. Recall 904 = A\ A°
and A° C A C A. Since p(0A) =0, u(A) = u(A°) = p(A).

(A) = u(4)

lim sup 1, (A) < limsup p,(A4) < p
pu(A®) = p(A)

<
liminf p,,(A) > liminf p,, (A%) >

Thus, j1,(A) = p(A).
Proof (5) = (1): We use the layer cake representation.

Lemma 1. If f € L'(S, ) and f >0, then [ fdu = [;° p({f > t})dt.

Let g € Cy(S). Since g is bounded (m < g < M), we can look at g —m > 0. So
assume without loss of generality that g > 0.

Jodu= | " g > 1)t

The set A; = {g > t} has boundary 0A; C {g = t}. We need p(9A;) = 0 for condition
(5) to apply. It is sufficient to show p({g =1t}) =0.

Exercise 3. The set of t € R such that u({g =t}) > 0 is at most countable.

Since the set of atoms is countable, for almost every ¢ (with respect to Lebesgue
measure), u({g = t}) = 0. Thus, for ae. ¢, u,({g > t}) — u({g > t}). By the
Dominated Convergence Theorem (since measures are bounded by 1),

/OOO pa({g > t})dt — /OOO p({g > t})dt — /gdun N /gdu-



