Lecture Notes: Weak Convergence and Characteristic
Functions

December 14

1 Weak Convergence of Measures

Recall that given a metric space S (e.g., S = R, R%), we denote by Prob(S) the set of all
Borel probability measures on S.

Definition 1. Let p, € Prob(S) and p € Prob(S). We say that p, = p weakly if, by
definition:

/gdun%/gdu Vg € Cy(5)
S S

where Cy(S) is the space of continuous bounded functions on S.

1.1 The Portmanteau Theorem

We proved the Portmanteau Theorem, which states that the following are equivalent:
1. p, = p (weakly).
2. [gdp, — [ gdp for all bounded and uniformly continuous g.
3. limsup,, p, (F) < p(F) for all closed sets F.
4. liminf, p,(U) > u(U) for all open sets U.

5. lim, pn(A) = p(A) for all Borel sets A with p(0A) = 0 (continuity sets).

2 Convergence in Distribution

Let {X,} be a sequence of real-valued random variables (RVs), and let X be another
real-valued RV.

Definition 2. We say that {X,} converges to X in distribution (denoted X, 4 X or
X, = X)if ux, = px weakly. That is, if px, — px in Prob(R).

Observations: From the Portmanteau theorem, X, 4 X s equivalent to:
o [gdux, = [gdux < Elg(X,)] = E[g(X)] for all g € Cy(R).

e E[g(X,)] = E[g(X)] for all bounded uniformly continuous g.
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e limsup P(X,, € F') < P(X € F) for all closed sets F.
e liminf P(X, € U) > P(X € U) for all open sets U.
e lim P(X, € A) = P(X € A) for all Borel sets A such that P(X € 0A) = 0.

Example 1. Consider S = [0,1]. Let X, = 1 and X = 0 almost surely (a.s.). Let
F ={0} (closed) and U = (0,1) (open).

e For any g € C((0,1)), Elg(X,))] = g(1/n) — g(0) = E[g(xX)].

e However, strictly examining the open set U = (0,1):

jx (U) = P (% e (0,1)) 1 (forn>1)

px(U) = P(0€(0,1)) =0

Here, liminf px, (U) =1 > 0 = ux(U), which satisfies condition (4) of the theorem.

2.1 Hierarchy of Convergence

Theorem 1.
X, = X as. = X, = X in prob.

Theorem 2.
X, — X in prob. = Xni>X

Proof Sketch. Let g be bounded and uniformly continuous. We want to show E[g(X,)] —
Elg(X)].

First, we show ¢(X,) — ¢(X) in probability. Given € > 0, since g is uniformly
continuous, there exists § > 0 such that if a,b € R and |a —b| < 6, then |g(a) — g(b)| < e.
Thus:

[Xn(w) = X(W)] <0 = [9(Xan(w)) — g(X(w))] <€

This implies:
P(lg(Xn) — 9(X)| > €) < P(|Xy — X| > 0)

Since X,, — X in probability, the RHS goes to 0, so g(X,,) — ¢(X) in probability.
Since ¢ is bounded, by the Bounded Convergence Theorem (for convergence in prob-
ability), we have:

Elg(Xn)] = Elg(X)]

By the Portmanteau theorem, this implies X,, 4 X, O]

3 Convergence of CDF's

Theorem 3. X, % X if and only if Fx, (t) — Fx(t) for all points t where Fx is
continuous.



Proof Sketch. (=) Let Fx(t) = pux((—o0,t]). Note that Fy is continuous at ¢ implies
wux({t}) = 0. Since d(—o0,t] = {t}, if Fix is continuous at ¢, then px(9(—o0,t]) = 0. By
the Portmanteau theorem:

,an(—OO,t] — /LX(—OO,t] — FXn<t) — Fx(t)

(<) Let C = {t € R : Fy is continuous at t}. Then F, (t) — Fx(t) for all t € C.
Since F'y is non-decreasing, the set of discontinuity points R\ C' is countable.
We will prove that for any open set U C R:

liminf pix, (U) = px(U)

Let Y = {(a,b) : a,b € C}. We first prove that px, (I) — ux(I) for all I € Y. For
I=(a,b)eY:
pix, (1) = Fx, (b—) — Fx, (a)
Mx(f):Fx(b—)—FX(a):Fx(b)—Fx(a) (SiDCGbGC)
Since a € C, Fx, (a) — Fx(a). It is enough to show lim Fx (b—) = Fx(b).
Step 1: Since Fl, is non-decreasing:

Fx, (b—) < Fx, (b) = Fx(b) = limsup Fx, (b—) < Fx(b)

Step 2: Since Fx is continuous at b, given € > 0, there exists d such that b —§ € C
and Fx(b—9) > Fx(b) —e. For n > ny:

Fxn(b—) ZFXn(b—(;) —)Fx<b—5) >Fx(b)—€

= liminf Fx, (b—) > Fx(b) — ¢

Combining Step 1 and 2, we get convergence for intervals in Y.
Step 3: Note that if [1,[, € Y, then 1 N[, €Y.

px, (It U Io) = px, (1) + px, (l2) — px, (1 0 1) — px (I U 1)

By induction, this holds for any finite union I1 U --- U I}.
Step 4: Any open set U can be written as U = Uk21 I, where I, € Y.

k
px(U) = lim pix <U1 ]z’>
Given € > 0, there exists k such that px(U) < ux (U, L) + ¢

k
< liminf px, (U IZ-> + e <liminf px, (U) + €

i=1

Letting € — 0, we get liminf uy, (U) > pux(U), which satisfies the Portmanteau condition.
[



4 Central Limit Theorem (CLT)

Theorem 4 (Normalized / Standard Version). Given a sequence (X,,) of i.i.d. random
variables with E[X1] =0 and Var(X;) =1. Let S, = X1 + -+ + X,,. Then:

Sn d
%—M\/(O,l)

where N'(0,1) has the density f(x) = #@*12/2'

5 Characteristic Functions
The characteristic function of a random variable X is a function ¢y : R — C defined by:

ox(t) = E[e"™] = Elcos(tX)] + iE[sin(tX)]

5.1 Properties
1. ox(0) = B[] = 1.
2. |ex(t)] < Efle™] = 1.
3. If X has a density fx, then ox(t) = [; " fx () dz.

4. Fourier Connection: The characteristic function is essentially the Fourier trans-
form of the probability density.

5. If Xy, Xy are independent, ¢x, . x,(t) = ¢x, (t)@x,(1).

6. Scaling: ¢.x(t) = ¢x(ct).

5.2 Fourier Analysis Review

If g € LY(R), we define:

This is well defined. However, we often work with functions that are not immediately in
L'

We consider the Schwartz Space S(R), which is the space of smooth functions that
vanish at infinity (and their derivatives vanish as well). S(R) is dense in L?(R). The
fourier transform of functions in the Schwartz space is again in the Schwartz space and
so we can apply it multiple times.

Exercise 1. The Fourier transform of the Gaussian function e /2 is e /2,
Hint: if G(t) = f(t) then what is the relation between G’ (t) and f(t) ?
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Figure 1: Schwartz space functions

5.3 Proof Sketch of CLT using Characteristic Functions
Assume E[X] =0 and E[X?] = 1. The Taylor expansion of ¢x around 0 is:

ox(s) =1+iE[X]s — EXC)s i

Now consider the normalized sum Z,, = \% Since S, is a sum of i.i.d. variables:

= ()]

Plugging in the expansion for large n:

As n — oo: .
: t? —t2/2
lm|(1—— | =e
n—00 2n
This limit, et/ 2 is exactly the characteristic function of the standard normal distri-
bution A (0, 1).
5.4 Levy Continuity Theorem

Theorem 5. X,, % X if and only if px, (t) = @x(t),Vt € R



Convergence of Characteristic Functions
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Figure 2: The Approximation
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