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December 14

1 Weak Convergence of Measures

Recall that given a metric space S (e.g., S = R,Rd), we denote by Prob(S) the set of all
Borel probability measures on S.

Definition 1. Let µn ∈ Prob(S) and µ ∈ Prob(S). We say that µn ⇒ µ weakly if, by
definition: ∫

S

g dµn →
∫
S

g dµ ∀g ∈ Cb(S)

where Cb(S) is the space of continuous bounded functions on S.

1.1 The Portmanteau Theorem

We proved the Portmanteau Theorem, which states that the following are equivalent:

1. µn ⇒ µ (weakly).

2.
∫
g dµn →

∫
g dµ for all bounded and uniformly continuous g.

3. lim supn µn(F ) ≤ µ(F ) for all closed sets F .

4. lim infn µn(U) ≥ µ(U) for all open sets U .

5. limn µn(A) = µ(A) for all Borel sets A with µ(∂A) = 0 (continuity sets).

2 Convergence in Distribution

Let {Xn} be a sequence of real-valued random variables (RVs), and let X be another
real-valued RV.

Definition 2. We say that {Xn} converges to X in distribution (denoted Xn
d−→ X or

Xn ⇒ X) if µXn ⇒ µX weakly. That is, if µXn → µX in Prob(R).

Observations: From the Portmanteau theorem, Xn
d−→ X is equivalent to:

•
∫
g dµXn →

∫
g dµX ⇐⇒ E[g(Xn)]→ E[g(X)] for all g ∈ Cb(R).

• E[g(Xn)]→ E[g(X)] for all bounded uniformly continuous g.
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• lim supP (Xn ∈ F ) ≤ P (X ∈ F ) for all closed sets F .

• lim inf P (Xn ∈ U) ≥ P (X ∈ U) for all open sets U .

• limP (Xn ∈ A) = P (X ∈ A) for all Borel sets A such that P (X ∈ ∂A) = 0.

Example 1. Consider S = [0, 1]. Let Xn = 1
n

and X = 0 almost surely (a.s.). Let
F = {0} (closed) and U = (0, 1) (open).

• For any g ∈ C([0, 1]), E[g(Xn)] = g(1/n)→ g(0) = E[g(X)].

• However, strictly examining the open set U = (0, 1):

µXn(U) = P

(
1

n
∈ (0, 1)

)
= 1 (for n > 1)

µX(U) = P (0 ∈ (0, 1)) = 0

Here, lim inf µXn(U) = 1 ≥ 0 = µX(U), which satisfies condition (4) of the theorem.

2.1 Hierarchy of Convergence

Theorem 1.
Xn → X a.s. =⇒ Xn → X in prob.

Theorem 2.
Xn → X in prob. =⇒ Xn

d−→ X

Proof Sketch. Let g be bounded and uniformly continuous. We want to show E[g(Xn)]→
E[g(X)].

First, we show g(Xn) → g(X) in probability. Given ε > 0, since g is uniformly
continuous, there exists δ > 0 such that if a, b ∈ R and |a− b| < δ, then |g(a)− g(b)| < ε.
Thus:

|Xn(ω)−X(ω)| < δ =⇒ |g(Xn(ω))− g(X(ω))| < ε

This implies:
P (|g(Xn)− g(X)| > ε) ≤ P (|Xn −X| > δ)

Since Xn → X in probability, the RHS goes to 0, so g(Xn)→ g(X) in probability.
Since g is bounded, by the Bounded Convergence Theorem (for convergence in prob-

ability), we have:
E[g(Xn)]→ E[g(X)]

By the Portmanteau theorem, this implies Xn
d−→ X.

3 Convergence of CDFs

Theorem 3. Xn
d−→ X if and only if FXn(t) → FX(t) for all points t where FX is

continuous.
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Proof Sketch. (⇒) Let FX(t) = µX((−∞, t]). Note that FX is continuous at t implies
µX({t}) = 0. Since ∂(−∞, t] = {t}, if FX is continuous at t, then µX(∂(−∞, t]) = 0. By
the Portmanteau theorem:

µXn(−∞, t]→ µX(−∞, t] =⇒ FXn(t)→ FX(t)

(⇐) Let C = {t ∈ R : FX is continuous at t}. Then FXn(t) → FX(t) for all t ∈ C.
Since FX is non-decreasing, the set of discontinuity points R \ C is countable.

We will prove that for any open set U ⊂ R:

lim inf µXn(U) ≥ µX(U)

Let Y = {(a, b) : a, b ∈ C}. We first prove that µXn(I) → µX(I) for all I ∈ Y . For
I = (a, b) ∈ Y :

µXn(I) = FXn(b−)− FXn(a)

µX(I) = FX(b−)− FX(a) = FX(b)− FX(a) (since b ∈ C)

Since a ∈ C, FXn(a)→ FX(a). It is enough to show limFXn(b−) = FX(b).
Step 1: Since FXn is non-decreasing:

FXn(b−) ≤ FXn(b)→ FX(b) =⇒ lim supFXn(b−) ≤ FX(b)

Step 2: Since FX is continuous at b, given ε > 0, there exists δ such that b− δ ∈ C
and FX(b− δ) > FX(b)− ε. For n > n0:

FXn(b−) ≥ FXn(b− δ)→ FX(b− δ) > FX(b)− ε

=⇒ lim inf FXn(b−) ≥ FX(b)− ε

Combining Step 1 and 2, we get convergence for intervals in Y .
Step 3: Note that if I1, I2 ∈ Y , then I1 ∩ I2 ∈ Y .

µXn(I1 ∪ I2) = µXn(I1) + µXn(I2)− µXn(I1 ∩ I2)→ µX(I1 ∪ I2)

By induction, this holds for any finite union I1 ∪ · · · ∪ Ik.
Step 4: Any open set U can be written as U =

⋃
k≥1 Ik where Ik ∈ Y .

µX(U) = lim
k→∞

µX

(
k⋃
i=1

Ii

)

Given ε > 0, there exists k such that µX(U) ≤ µX(
⋃k
i=1 Ii) + ε.

≤ lim inf µXn

(
k⋃
i=1

Ii

)
+ ε ≤ lim inf µXn(U) + ε

Letting ε→ 0, we get lim inf µXn(U) ≥ µX(U), which satisfies the Portmanteau condition.
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4 Central Limit Theorem (CLT)

Theorem 4 (Normalized / Standard Version). Given a sequence (Xn) of i.i.d. random
variables with E[X1] = 0 and Var(X1) = 1. Let Sn = X1 + · · ·+Xn. Then:

Sn√
n

d−→ N (0, 1)

where N (0, 1) has the density f(x) = 1√
2π
e−x

2/2.

5 Characteristic Functions

The characteristic function of a random variable X is a function ϕX : R→ C defined by:

ϕX(t) = E[eitX ] = E[cos(tX)] + iE[sin(tX)]

5.1 Properties

1. ϕX(0) = E[e0] = 1.

2. |ϕX(t)| ≤ E[|eitX |] = 1.

3. If X has a density fX , then ϕX(t) =
∫
R e

itxfX(x) dx.

4. Fourier Connection: The characteristic function is essentially the Fourier trans-
form of the probability density.

5. If X1, X2 are independent, ϕX1+X2(t) = ϕX1(t)ϕX2(t).

6. Scaling: ϕcX(t) = ϕX(ct).

5.2 Fourier Analysis Review

If g ∈ L1(R), we define:

ĝ(t) =

∫
R
e−itxg(x)dx

This is well defined. However, we often work with functions that are not immediately in
L1.

We consider the Schwartz Space S(R), which is the space of smooth functions that
vanish at infinity (and their derivatives vanish as well). S(R) is dense in L2(R). The
fourier transform of functions in the Schwartz space is again in the Schwartz space and
so we can apply it multiple times.

Exercise 1. The Fourier transform of the Gaussian function e−x
2/2 is e−t

2/2.
Hint: if G(t) = f̂(t) then what is the relation between G

′
(t) and f̂(t) ?
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Figure 1: Schwartz space functions

5.3 Proof Sketch of CLT using Characteristic Functions

Assume E[X] = 0 and E[X2] = 1. The Taylor expansion of ϕX around 0 is:

ϕX(s) = 1 + iE[X]s− E[X2]s2

2
+ o(s2) = 1− s2

2
+ o(s2)

Now consider the normalized sum Zn = Sn√
n
. Since Sn is a sum of i.i.d. variables:

ϕ Sn√
n
(t) =

[
ϕX

(
t√
n

)]n
Plugging in the expansion for large n:

ϕ Sn√
n
(t) ≈

(
1− t2

2n

)n
As n→∞:

lim
n→∞

(
1− t2

2n

)n
= e−t

2/2

This limit, e−t
2/2, is exactly the characteristic function of the standard normal distri-

bution N (0, 1).

5.4 Levy Continuity Theorem

Theorem 5. Xn
d−→ X if and only if ϕXn(t)→ ϕX(t),∀t ∈ R
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Figure 2: The Approximation
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