

# Lecture Notes: CLT Proof, Characteristic Functions, and Brownian Motion

December 16

## 1 CLT Proof (Continuation)

### 1.1 Review and Notation

Recall that  $X_n \xrightarrow{d} X$  (convergence in distribution) if  $E[g(X_n)] \rightarrow E[g(X)]$  for all  $g \in C_b(\mathbb{R})$  (continuous bounded functions). By the Portmanteau Theorem, this is equivalent to convergence for all bounded uniformly continuous functions.

**Definition 1** (Support and Compact Support). *The support of a function is defined as  $\text{Supp}(g) = \overline{\{x : g(x) \neq 0\}}$ . We denote by  $C_c(\mathbb{R})$  the space of continuous functions with compact support:*

$$C_c(\mathbb{R}) = \{g : \mathbb{R} \rightarrow \mathbb{R} \mid g \text{ is continuous and has compact support}\}$$

**Proposition 1.**  $X_n \xrightarrow{d} X$  if  $E[g(X_n)] \rightarrow E[g(X)]$  for all  $g \in C_c(\mathbb{R})$ .

### 1.2 Proof of Proposition

Assume  $E[g(X_n)] \rightarrow E[g(X)]$  for all  $g \in C_c(\mathbb{R})$ . We need to show that  $F_{X_n}(t) \rightarrow F_X(t)$  at every continuity point  $t$  of  $F_X$ .

Fix  $t \in \mathbb{R}$  such that  $F_X$  is continuous at  $t$ . Let  $\epsilon > 0$ . Since  $F_X$  is a CDF,  $\lim_{x \rightarrow -\infty} F_X(x) = 0$  and  $\lim_{x \rightarrow \infty} F_X(x) = 1$ . Thus, we can find a large  $N$  such that:

$$F_X(-N) < \epsilon \quad \text{and} \quad F_X(N) > 1 - \epsilon \iff \mu_X(N, \infty) < \epsilon$$

We use this to approximate the indicator functions using partitions of unity.

#### Step 1: Lower Bound

We construct a function  $g \in C_c(\mathbb{R})$  such that  $\mathbf{1}_{[-N, t-\delta]} \leq g \leq \mathbf{1}_{(-\infty, t]}$ . Then:

$$F_{X_n}(t) = \int \mathbf{1}_{(-\infty, t]} d\mu_{X_n} \geq \int g d\mu_{X_n}$$

Taking the liminf:

$$\begin{aligned} \liminf_{n \rightarrow \infty} F_{X_n}(t) &\geq \lim_{n \rightarrow \infty} \int g d\mu_{X_n} = \int g d\mu_X \\ &\geq \mu_X(-N, t-\delta) \geq F_X(t-\delta) - F_X(-N) \geq F_X(t) - 2\epsilon \end{aligned}$$

## Step 2: Upper Bound

We define a trapezoidal function  $h \in C_c(\mathbb{R})$  to approximate the tail  $(t, \infty)$ . Construct  $h$  such that  $\mathbf{1}_{[t+\delta, N]} \leq h \leq \mathbf{1}_{[t, \infty)}$ .

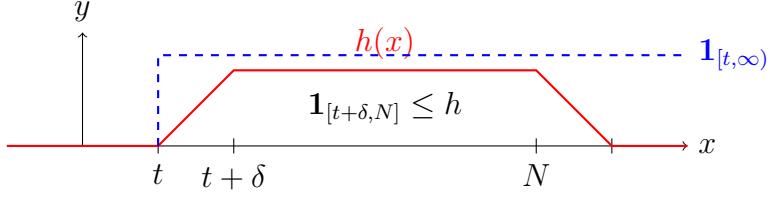


Figure 1: Approximation function  $h$  (red) relative to the indicator (blue).

Then:

$$F_{X_n}(t) = 1 - \mu_{X_n}(t, \infty) \leq 1 - \int h \, d\mu_{X_n}$$

Taking the limsup:

$$\limsup F_{X_n}(t) \leq 1 - \int h \, d\mu_X \leq 1 - \mu_X(t + \delta, N)$$

Using the bounds on  $N$  and continuity at  $t$ , we eventually get:

$$\limsup F_{X_n}(t) \leq F_X(t) + 2\epsilon$$

Combining Step 1 and 2 gives  $\lim F_{X_n}(t) = F_X(t)$ .

## 2 Lévy's Continuity Theorem

**Theorem 1.**  $X_n \xrightarrow{d} X$  if and only if  $\varphi_{X_n}(t) \rightarrow \varphi_X(t)$  for all  $t \in \mathbb{R}$ , where  $\varphi_X(t) = E[e^{itX}]$  is the characteristic function.

### 2.1 Proof of ( $\Rightarrow$ ) Direction

Assume  $X_n \xrightarrow{d} X$ . Since  $g(x) = e^{itx}$  is a bounded continuous function for any fixed  $t$ , by the definition of convergence in distribution:

$$\varphi_{X_n}(t) = E[g(X_n)] \rightarrow E[g(X)] = \varphi_X(t)$$

### 2.2 Connection to Schwartz Space (Detailed Proof)

Let  $g \in \mathcal{S}(\mathbb{R})$  (Schwartz space). We want to show  $E[g(X_n)] \rightarrow E[g(X)]$ . Using the Fourier Inversion Formula  $g(x) = \int \hat{g}(t)e^{itx} dt$ :

$$E[g(X_n)] = E \left[ \int_{\mathbb{R}} \hat{g}(t) e^{itX_n} dt \right]$$

By Fubini's Theorem (applicable since quantities are bounded/integrable):

$$= \int_{\mathbb{R}} \hat{g}(t) E[e^{itX_n}] dt = \int_{\mathbb{R}} \hat{g}(t) \varphi_{X_n}(t) dt$$

Since  $\varphi_{X_n} \rightarrow \varphi_X$  pointwise and is bounded by 1, by the Dominated Convergence Theorem:

$$\int \hat{g} \varphi_{X_n} dt \rightarrow \int \hat{g} \varphi_X dt = E[g(X)]$$

### Density Argument ( $\epsilon/3$ Proof)

We know that  $\mathcal{S}(\mathbb{R})$  is dense in  $C_c(\mathbb{R})$  (under the sup norm  $\|\cdot\|_\infty$ ). Let  $g \in C_c(\mathbb{R})$  and  $\epsilon > 0$ . There exists a function  $g_\epsilon \in \mathcal{S}(\mathbb{R})$  such that  $\|g - g_\epsilon\|_\infty < \epsilon$ .

We know from the previous step that  $E[g_\epsilon(X_n)] \rightarrow E[g_\epsilon(X)]$ . Thus, for  $n \geq n_0$ ,  $|E[g_\epsilon(X_n)] - E[g_\epsilon(X)]| < \epsilon$ . Also, since  $\|g - g_\epsilon\|_\infty < \epsilon$ :

$$\|g(X_n) - g_\epsilon(X_n)\|_\infty < \epsilon \implies E|g(X_n) - g_\epsilon(X_n)| < \epsilon$$

Similarly,  $E|g(X) - g_\epsilon(X)| < \epsilon$ .

Using the Triangle Inequality:

$$\begin{aligned} |E[g(X_n)] - E[g(X)]| &\leq E|g(X_n) - g_\epsilon(X_n)| + |E[g_\epsilon(X_n)] - E[g_\epsilon(X)]| + E|g_\epsilon(X) - g(X)| \\ &< \epsilon + \epsilon + \epsilon = 3\epsilon \end{aligned}$$

Thus  $E[g(X_n)] \rightarrow E[g(X)]$  for all  $g \in C_c(\mathbb{R})$ .

## 2.3 CLT (General Case)

Let  $X_1, \dots, X_n$  be i.i.d. RVs. Assume  $E[X_1] = \mu$  and  $\text{Var}(X_1) = \sigma^2 < \infty$  (where  $\sigma > 0$ ). We define the standardized variables:

$$X'_i = \frac{X_i - \mu}{\sigma}$$

Then  $E[X'_i] = 0$  and  $\text{Var}(X'_i) = 1$ . The standardized sum is:

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma}$$

This reduces to the standard version proved in the last lecture, so  $S_n$  (normalized) converges to  $\mathcal{N}(0, 1)$ .

## 3 Brownian Motion

### 3.1 Motivation and History

Observed by Robert Brown in 1828 (pollen/dust in liquid/air). Let  $X(t)$  be the height above the ground of a dust mote at time  $t$ . Let  $v(t) = X'(t)$  be the vertical velocity. By Newton's 2nd Law:

$$mv'(t) = F(t)$$

where  $F(t)$  is the force generated by the collision of air molecules with the dust.

## 3.2 Reasonable Expectations

What is reasonable to expect from this motion?

1. **Independent Increments:** Given a moment in time  $T > 0$ , the increment in velocity in the future  $[v(t + T) - v(t)]$  should be an independent copy of the previous increment  $[v(T) - v(0)]$ . This is because statistically, the force exerted by air molecules does not change with time (memoryless property).
2. **Normal Distribution:** The increments should be normally distributed because the motion is the net effect of the "bombardment" of millions of air molecules (CLT application).
3. **Linear Variance:** If  $v(t + T) - v(0)$  is the sum of independent increments  $v(t + T) - v(T)$  and  $v(T) - v(0)$ :

$$\begin{aligned} v(t + T) - v(0) &= (v(t + T) - v(T)) + (v(T) - v(0)) \\ &\sim \mathcal{N}(\mu + \hat{\mu}, \sigma^2(t) + \sigma^2(T)) \end{aligned}$$

This implies  $\sigma^2(T + t) = \sigma^2(T) + \sigma^2(t)$ . The only continuous solution with  $f(0) = 0$  is the linear function:

$$\sigma^2(T) = cT$$

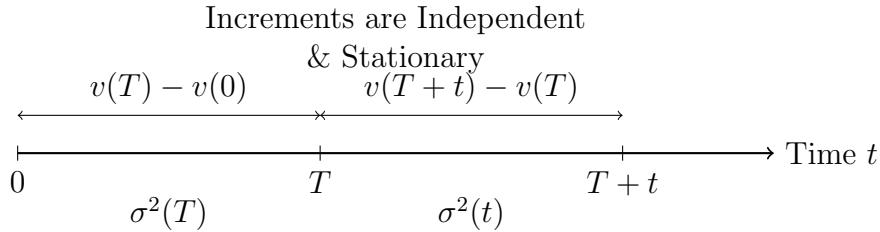


Figure 2: Visualizing the independent increments and additivity of variance over time.

## 3.3 Definition: 1D Brownian Motion

A Brownian Motion is a random process  $\{B(t) : t \geq 0\}$  satisfying:

1. **Independent Increments:** For any  $0 \leq t_1 < \dots < t_n$ , the increments  $B(t_i) - B(t_{i-1})$  are independent.
2. **Gaussian Increments:** For any  $t, h \geq 0$ ,  $B(t + h) - B(t) \sim \mathcal{N}(0, h)$ .
3. **Continuity:** Almost surely,  $t \mapsto B(t)$  is continuous.

**Theorem 2** (Wiener, 1923). *Brownian Motion exists. There is a random process satisfying these conditions (Wiener Process).*