Lecture Notes: CLT Proof, Characteristic Functions,
and Brownian Motion

December 16

1 CLT Proof (Continuation)

1.1 Review and Notation

Recall that X, & X (convergence in distribution) if E[g(X,)] — E[g(X)] for all g €
Cy(R) (continuous bounded functions). By the Portmanteau Theorem, this is equivalent
to convergence for all bounded uniformly continuous functions.

Definition 1 (Support and Compact Support). The support of a function is defined as
Supp(g) = {x: g(x) # 0}. We denote by C.(R) the space of continuous functions with
compact support:

Ce(R) ={g:R — R | g is continuous and has compact support}

Proposition 1. X,, % X if E[g(X,)] — E[g(X)] for all g € C.(R).

1.2 Proof of Proposition

Assume E[g(X,)] — F[g(X)] for all g € C.(R). We need to show that Fx,_(t) — Fx(t)
at every continuity point ¢ of Fly.

Fix t € R such that Fx is continuous at t. Let ¢ > 0. Since Fx is a CDF,
lim, , o Fx(z) =0 and lim, ,,, Fx(x) = 1. Thus, we can find a large N such that:

Fx(=N)<e and Fx(N)>1—¢€¢ < ux(N,00) <e¢
We use this to approximate the indicator functions using partitions of unity.

Step 1: Lower Bound
We construct a function g € C.(R) such that 1j_y;—5 < g < 1(_ooy. Then:

F,(t) :/1(—oo,t]d,an > /gduxn

Taking the liminf:
liminf Fx, () > lim [ gdux, = /gd,ux
n—oo

n—oo

> px (=N, t — 8) > Fx(t — 8) — Fx(—N) > Fx(t) — 2e
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Step 2: Upper Bound

We define a trapezoidal function h € C.(R) to approximate the tail (¢,00). Construct h
such that 158 < h < 1 ).

Figure 1: Approximation function h (red) relative to the indicator (blue).

Then:
Fx,(t) =1-px,(t,00) <1-— /hdﬂxn

Taking the limsup:
limsup Fy, (t) < 1— /hdux <1—px(t+4,N)
Using the bounds on N and continuity at ¢, we eventually get:
limsup Fy, (t) < Fx(t) + 2¢

Combining Step 1 and 2 gives lim Fy, (t) = Fx(t).

2 Lévy’s Continuity Theorem

Theorem 1. X, % X if and only if ox, (t) = ©x(t) for allt € R, where px(t) = Ele"]
1s the characteristic function.

2.1 Proof of (=) Direction

Assume X, < X. Since g(x) = €™ is a bounded continuous function for any fixed ¢, by
the definition of convergence in distribution:

¢x,(t) = Elg(Xn)] = Elg(X)] = ¢x (1)

2.2 Connection to Schwartz Space (Detailed Proof)

Let g € S(R) (Schwartz space). We want to show E[g(X,)] — E[g(X)]. Using the
Fourier Inversion Formula g(z) = [ g(t)e™* dt:

Bl = 8 | [ e

By Fubini’s Theorem (applicable since quantities are bounded/integrable):

— /R G(t) B[] dt = / 9(t)px, (t) dt

R
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Since px, — @x pointwise and is bounded by 1, by the Dominated Convergence Theorem:
[aex e~ [ goxde= Elo(x)

Density Argument (¢/3 Proof)

We know that S(R) is dense in C.(R) (under the sup norm || - ||«). Let g € C.(R) and
€ > 0. There exists a function g. € S(R) such that ||g — ge||oo < €.

We know from the previous step that E[g.(X,)] — FElg.(X)]. Thus, for n > no,
|E[g.(X,)] — Elge(X)]| < e. Also, since ||g — ge||oo < €

19(X0) = 9e(Xn)lloo < € = E[g(Xn) — ge(Xn)| <€

Similarly, F|g(X) — g.(X)| < e.
Using the Triangle Inequality:

[Elg(Xn)] = Elg(X)]] < Elg(Xn) = ge(Xn)| + [Elge(Xn)] = Elge(X)]| + Elge(X) — g(X)

<éetete=3¢
Thus E[g(X,)] = E[g(X)] for all g € C.(R).

2.3 CLT (General Case)

Let X1,..., X, beiid. RVs. Assume E[X;] = p and Var(X;) = 0% < oo (where o > 0).
We define the standardized variables:

Xi—p
o

X =

Then F[X]] = 0 and Var(X/) = 1. The standardized sum is:

Sp—np 1 X, —p
oyvn _\/ﬁ; o

This reduces to the standard version proved in the last lecture, so S,, (normalized) con-
verges to N (0, 1).

3 Brownian Motion

3.1 Motivation and History

Observed by Robert Brown in 1828 (pollen/dust in liquid/air). Let X (¢) be the height
above the ground of a dust mote at time ¢. Let v(t) = X'() be the vertical velocity. By
Newton’s 2nd Law:

mv'(t) = F(t)

where F(t) is the force generated by the collision of air molecules with the dust.



3.2 Reasonable Expectations

What is reasonable to expect from this motion?

1. Independent Increments: Given a moment in time 7" > 0, the increment in
velocity in the future [v(t +T') — v(t)] should be an independent copy of the previ-
ous increment [v(7) — v(0)]. This is because statistically, the force exerted by air
molecules does not change with time (memoryless property).

2. Normal Distribution: The increments should be normally distributed because
the motion is the net effect of the "bombardment” of millions of air molecules (CLT
application).

3. Linear Variance: If v(t +7) — v(0) is the sum of independent increments v(t +
T) —o(T) and v(T) — v(0):
v(t+T)—v0)=(v(t+T)—v(T))+ (v(T) — v(0))

~ N+ i1, *(t) + 0X(T)

This implies (T +t) = 0*(T) +02(t). The only continuous solution with f(0) = 0
is the linear function:
o*(T) = cT

Increments are Independent

& Stationary
v(T) — v(0) o(T +t) —o(T)

0 T T+t
a?(T) a(t)

Figure 2: Visualizing the independent increments and additivity of variance over time.

3.3 Definition: 1D Brownian Motion

A Brownian Motion is a random process {B(t) : t > 0} satisfying:

1. Independent Increments: For any 0 < t; < --- < t,, the increments B(t;) —
B(t;_1) are independent.

2. Gaussian Increments: For any t,h > 0, B(t + h) — B(t) ~ N (0, h).
3. Continuity: Almost surely, ¢ — B(t) is continuous.

Theorem 2 (Wiener, 1923). Brownian Motion exists. There is a random process satis-
fying these conditions (Wiener Process).
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