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1 CLT Proof (Continuation)

1.1 Review and Notation

Recall that Xn
d−→ X (convergence in distribution) if E[g(Xn)] → E[g(X)] for all g ∈

Cb(R) (continuous bounded functions). By the Portmanteau Theorem, this is equivalent
to convergence for all bounded uniformly continuous functions.

Definition 1 (Support and Compact Support). The support of a function is defined as
Supp(g) = {x : g(x) 6= 0}. We denote by Cc(R) the space of continuous functions with
compact support:

Cc(R) = {g : R→ R | g is continuous and has compact support}

Proposition 1. Xn
d−→ X if E[g(Xn)]→ E[g(X)] for all g ∈ Cc(R).

1.2 Proof of Proposition

Assume E[g(Xn)] → E[g(X)] for all g ∈ Cc(R). We need to show that FXn(t) → FX(t)
at every continuity point t of FX .

Fix t ∈ R such that FX is continuous at t. Let ε > 0. Since FX is a CDF,
limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1. Thus, we can find a large N such that:

FX(−N) < ε and FX(N) > 1− ε ⇐⇒ µX(N,∞) < ε

We use this to approximate the indicator functions using partitions of unity.

Step 1: Lower Bound

We construct a function g ∈ Cc(R) such that 1[−N,t−δ] ≤ g ≤ 1(−∞,t]. Then:

FXn(t) =

∫
1(−∞,t]dµXn ≥

∫
g dµXn

Taking the liminf:

lim inf
n→∞

FXn(t) ≥ lim
n→∞

∫
g dµXn =

∫
g dµX

≥ µX(−N, t− δ) ≥ FX(t− δ)− FX(−N) ≥ FX(t)− 2ε
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Step 2: Upper Bound

We define a trapezoidal function h ∈ Cc(R) to approximate the tail (t,∞). Construct h
such that 1[t+δ,N ] ≤ h ≤ 1[t,∞).

x

y

t t+ δ N

h(x) 1[t,∞)

1[t+δ,N ] ≤ h

Figure 1: Approximation function h (red) relative to the indicator (blue).

Then:

FXn(t) = 1− µXn(t,∞) ≤ 1−
∫
h dµXn

Taking the limsup:

lim supFXn(t) ≤ 1−
∫
h dµX ≤ 1− µX(t+ δ,N)

Using the bounds on N and continuity at t, we eventually get:

lim supFXn(t) ≤ FX(t) + 2ε

Combining Step 1 and 2 gives limFXn(t) = FX(t).

2 Lévy’s Continuity Theorem

Theorem 1. Xn
d−→ X if and only if ϕXn(t)→ ϕX(t) for all t ∈ R, where ϕX(t) = E[eitX ]

is the characteristic function.

2.1 Proof of (⇒) Direction

Assume Xn
d−→ X. Since g(x) = eitx is a bounded continuous function for any fixed t, by

the definition of convergence in distribution:

ϕXn(t) = E[g(Xn)]→ E[g(X)] = ϕX(t)

2.2 Connection to Schwartz Space (Detailed Proof)

Let g ∈ S(R) (Schwartz space). We want to show E[g(Xn)] → E[g(X)]. Using the
Fourier Inversion Formula g(x) =

∫
ĝ(t)eitx dt:

E[g(Xn)] = E

[∫
R
ĝ(t)eitXn dt

]
By Fubini’s Theorem (applicable since quantities are bounded/integrable):

=

∫
R
ĝ(t)E[eitXn ] dt =

∫
R
ĝ(t)ϕXn(t) dt
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Since ϕXn → ϕX pointwise and is bounded by 1, by the Dominated Convergence Theorem:∫
ĝϕXn dt→

∫
ĝϕX dt = E[g(X)]

Density Argument (ε/3 Proof)

We know that S(R) is dense in Cc(R) (under the sup norm || · ||∞). Let g ∈ Cc(R) and
ε > 0. There exists a function gε ∈ S(R) such that ||g − gε||∞ < ε.

We know from the previous step that E[gε(Xn)] → E[gε(X)]. Thus, for n ≥ n0,
|E[gε(Xn)]− E[gε(X)]| < ε. Also, since ||g − gε||∞ < ε:

||g(Xn)− gε(Xn)||∞ < ε =⇒ E|g(Xn)− gε(Xn)| < ε

Similarly, E|g(X)− gε(X)| < ε.
Using the Triangle Inequality:

|E[g(Xn)]− E[g(X)]| ≤ E|g(Xn)− gε(Xn)|+ |E[gε(Xn)]− E[gε(X)]|+ E|gε(X)− g(X)|

< ε+ ε+ ε = 3ε

Thus E[g(Xn)]→ E[g(X)] for all g ∈ Cc(R).

2.3 CLT (General Case)

Let X1, . . . , Xn be i.i.d. RVs. Assume E[X1] = µ and Var(X1) = σ2 <∞ (where σ > 0).
We define the standardized variables:

X ′i =
Xi − µ
σ

Then E[X ′i] = 0 and Var(X ′i) = 1. The standardized sum is:

Sn − nµ
σ
√
n

=
1√
n

n∑
i=1

Xi − µ
σ

This reduces to the standard version proved in the last lecture, so Sn (normalized) con-
verges to N (0, 1).

3 Brownian Motion

3.1 Motivation and History

Observed by Robert Brown in 1828 (pollen/dust in liquid/air). Let X(t) be the height
above the ground of a dust mote at time t. Let v(t) = X ′(t) be the vertical velocity. By
Newton’s 2nd Law:

mv′(t) = F (t)

where F (t) is the force generated by the collision of air molecules with the dust.
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3.2 Reasonable Expectations

What is reasonable to expect from this motion?

1. Independent Increments: Given a moment in time T > 0, the increment in
velocity in the future [v(t+ T )− v(t)] should be an independent copy of the previ-
ous increment [v(T ) − v(0)]. This is because statistically, the force exerted by air
molecules does not change with time (memoryless property).

2. Normal Distribution: The increments should be normally distributed because
the motion is the net effect of the ”bombardment” of millions of air molecules (CLT
application).

3. Linear Variance: If v(t + T ) − v(0) is the sum of independent increments v(t +
T )− v(T ) and v(T )− v(0):

v(t+ T )− v(0) = (v(t+ T )− v(T )) + (v(T )− v(0))

∼ N (µ+ µ̂, σ2(t) + σ2(T ))

This implies σ2(T + t) = σ2(T )+σ2(t). The only continuous solution with f(0) = 0
is the linear function:

σ2(T ) = cT

Time t
0 T T + t

v(T )− v(0) v(T + t)− v(T )

σ2(T ) σ2(t)

Increments are Independent
& Stationary

Figure 2: Visualizing the independent increments and additivity of variance over time.

3.3 Definition: 1D Brownian Motion

A Brownian Motion is a random process {B(t) : t ≥ 0} satisfying:

1. Independent Increments: For any 0 ≤ t1 < · · · < tn, the increments B(ti) −
B(ti−1) are independent.

2. Gaussian Increments: For any t, h ≥ 0, B(t+ h)−B(t) ∼ N (0, h).

3. Continuity: Almost surely, t 7→ B(t) is continuous.

Theorem 2 (Wiener, 1923). Brownian Motion exists. There is a random process satis-
fying these conditions (Wiener Process).
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