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Gaussian Random Vectors
Let (2, F, P) be a Probability Space.

Definition 1. A random vector X = (Xy,...,X,,) has a Standard Gaussian Dis-
tribution if its components X1, ..., X,, are jointly i.i.d. random variables with standard
normal distribution N(0,1).

Definition 2. A random vector Y = (Y1,...,Yy) : Q — R? is called a Gaussian
Random Vector if it is obtained from a vector with standard Gaussian distribution via
an affine transformation. That is, there exists a matric A € Mat(d x m) and a vector
b € R? such that:

YT =AXT +b"

where X = (X1,...,X;) is a standard Gaussian vector.
Note: We treat vectors as row vectors by convention.
Observation 1. A Gaussian Random Vector need not be independent.
Recall: For X, Y : Q — R (real-valued RVs):
cov(X,)Y)=E[(X —EX))(Y - E(Y))] =EXY)—- EX)E®Y)
For vector Z = (Zy,..., Z,)T :  — R", the expectation is the vector E(Z) = (EZy,...,EZ,)T €

R™.
The Covariance Matrix is defined as:

cov(Z) =cov(Z,7Z) = E[(Z — EZ)"(Z — EZ)] € Mat(n x n)
Lemma 1. IfY is a Gaussian Random Vector such that YT = AXT + bT, then:
L E(Y)=b
2. cov(Y) = AAT



Orthogonal Transformations

If A€ O(d) (orthogonal matrices), then AAT = AT A = I. Orthogonal matrices preserve
distances and norms. If X has a standard Gaussian distribution, then AX7 also has a
standard Gaussian distribution.

Proof Sketch. Since X is standard Gaussian, its density is px.
px(E)=P(X = (Xy,...,Xy) € E)

For a rectangle £ = F; x --- X E,4, by independence:

pclE) = ux, (B2) i (Ea) = [ Flayds
E
where the density is
el

—a:2/2
H Vor — (em)

Then pax(F) = P(AX € E) = P(X € A'E) = [, ., F(x)dz. Using the change of
variables y = Arx = z = A 1y

/ F(A™'y)| det A~ dy
E

Since A € O(d), |det A| = |det A™' = 1 and ||[A~'y|| = |ly||. Thus, the density remains
F(y). Since both random vectors have the same density (which is the product density),
the components of AX are jointly independent as well. O]

Corollary 1. Let X1, X5 : Q@ — R be i.i.d. RVs with N(0,6%). Then X; + X and
X1 — Xy are i.i.d. with N(0,20?).

Proof Sketch. Consider the scaled vector (71, %) which is a standard Gaussian vector.

Apply the rotation matrix:
1 X1 X14+Xo
4 {é} = | 7%,
V2 o Tov2

The result is a Standard Gaussian vector. Thus, X:\r/? and Xclr\’/%ﬁ are independent
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standard normals, implying X; + X, and X; — X, are independent with variance (ov/2)% =
202. ]

Proposition 1. If X,Y are d-dimensional Gaussian random vectors such that E(X) =
E(Y) and cov(X) = cov(Y'), then X Ly (they have the same distribution).

Proof Sketch. Let X = AXT + 0" and Y7 = BX] + ¢! We have E(X) = b and
E(Y)=¢,s0b=c. Assume E(X) = 0 for simplicity. Thus X7 = AX] and YT = BX].
A € Mat(d x m) and B € Mat(d x k). WLOG assume m < k. By extending A and XT
by adding zeros, we may assume A, B € Mat(d x k). Let Ay, ..., Ay be the rows of A and
Bi,. .., Bq be the rows of B. Let A = span{A;} C R*¥ and B = span{B;} C R*. Define
the map L : A — B by L(A;) = B;. We show L is injective. If > v;A; = 0, then:

1Y " widil]* = vAA™Y" = BB = || Y uiBi|> =0
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Thus L is an isomorphism and preserves the inner product (since (AAT);; = (BBT);;). L
can be extended to an orthogonal transformation. Therefore Y7 can be written in terms
of a transformed standard Gaussian vector that has the same distribution as X. O]

Corollary 2. Let Y be a Gaussian random vector (YT = AXT + " ). Then the com-
ponents of Y are jointly independent if and only if its covariance matrix is diagonal
(pairwise independent).

Proof Sketch. If independent, the covariance matrix is clearly diagonal. Conversely, if
cov(Y) is diagonal (say entries o?), consider a random vector Z with independent com-

i

ponents N'(0,0?). Z is Gaussian and has the same Mean and Covariance as Y. By the

Proposition, Y 2 7. Since Z has independent entries, so does Y. O

Brownian Motion

Theorem 1 (Wiener, 1923). The Standard Brownian Motion exists. That is, there exists
a random process B : [0,00) x Q@ — R such that:

1. B(0) = 0 almost surely.

2. Independent increments: For 0 <t; <ty < --- < t, the increments B(t;11) — B(t;)
are independent.

3. Stationary Gaussian increments: B(t) — B(s) ~ N(0,t — s) fort > s.

4. t— B(t) is continuous almost surely.

Construction of Brownian Motion on [0, 1]

Proof Sketch. We construct BM as a random element in C'[0, 1], as the uniform limit of a
sequence of continuous functions defined on Dyadic Numbers. Let D,, = {2% 0<k < 2”}.
Note that D,, C Dyy1. Let D =50 Dr. We will define B(d) for all d € D. Let {Zi}aep
be independent A(0,1) random variables.

Step n =0: Dy = {0,1}. Define B(0) =0 and B(1) = Z; ~ N(0,1). The increment
is B(1) — B(0) = Z;.

Step n =1: D; = {0,1, %} Define:

1\ B1)+B0) Z Z, Z
B<_> W+B0) 21241 2L

2 2 2 2 2
Increments:
e B(1)— B(1/2) = 7, — (% + 22y = 24 _ 242 By Lemma, this is ~ N(0,1 +1) =
N0, 3).

e B(1/2) — B(0) = % + % By Lemma, this is ~ N (0, %)

Also, these increments are independent (sum and difference of independent Gaussians).
Step n=2: D, ={0,1,%,1,3}.
1 B(1/2 B0 Z

5(1) - BURLEBO), 2

4 2 22




B (i) _ B+ B(1/2) | Zys

2 22
Let us check the increments. First, for the interval [0, 1]:

1 Zl Zl/g Z1/22 1
B _B - — _— ~ —
( ) (0) T T T e N 0,7
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Next, for the interval [%, 3]:
Zyv  Zip Ly
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By Lemma, those two increments are i.i.d with N/ (0, }L)

Now consider the wider interval increment B(1) — B (4 ):

Iy Zy Ly Zyz\ 32y Zip Zie
B<1)_B(§)_ 1_(Z+ 4 W) 4 4 232
§a

Each of the terms have a different variance but the total variance is i
Finally, consider B(3) — B(0):

3 32y Zhp Zype
8(2—2)—8(0)— R SR

This is the same as above with variance %. The independence of those increments follows
from the fact that they are two linear combinations of 3 independent terms.

General Step: Inductively define B(d) for d € D, \ D,,_;.

B(d+ 5) + B(d— &) Zy
B(d) = 9 T 5w

This ensures increments are pairwise (and jointly) independent with the correct dis-

tribution.

Functional Representation

Let us define functions F,(t).

0 t=20
Fo(t) = Zl t= 1 = tZl
Linear in between
0 t € Dy
Z1
Fl(t) = 2/2 = %

Linear in between



0 teD,_
Fu(t) = 2(75% t €Dy \ Dy

Linear in between

Define the partial sum:
Sald) = Y Fi(d)
i=0

Since for d € D,,, F,,(d) = 0 for all m > n, the sum stabilizes. We estimate the limit
S(t) =307y Fu(t) for t € [0,1]. If this sum converges uniformly, the Brownian Motion
is well-defined and continuous.
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