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Gaussian Random Vectors

Let (Ω,F , P ) be a Probability Space.

Definition 1. A random vector X = (X1, . . . , Xm) has a Standard Gaussian Dis-
tribution if its components X1, . . . , Xm are jointly i.i.d. random variables with standard
normal distribution N (0, 1).

Definition 2. A random vector Y = (Y1, . . . , Yd) : Ω → Rd is called a Gaussian
Random Vector if it is obtained from a vector with standard Gaussian distribution via
an affine transformation. That is, there exists a matrix A ∈ Mat(d × m) and a vector
b ∈ Rd such that:

Y T = AXT + bT

where X = (X1, . . . , Xm) is a standard Gaussian vector.

Note: We treat vectors as row vectors by convention.

Observation 1. A Gaussian Random Vector need not be independent.

Recall: For X, Y : Ω→ R (real-valued RVs):

cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y )

For vector Z = (Z1, . . . , Zn)T : Ω→ Rn, the expectation is the vector E(Z) = (EZ1, . . . , EZn)T ∈
Rn.
The Covariance Matrix is defined as:

cov(Z) = cov(Z,Z) = E[(Z − EZ)T (Z − EZ)] ∈ Mat(n× n)

Lemma 1. If Y is a Gaussian Random Vector such that Y T = AXT + bT , then:

1. E(Y ) = b

2. cov(Y ) = AAT
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Orthogonal Transformations

If A ∈ O(d) (orthogonal matrices), then AAT = ATA = I. Orthogonal matrices preserve
distances and norms. If X has a standard Gaussian distribution, then AXT also has a
standard Gaussian distribution.

Proof Sketch. Since X is standard Gaussian, its density is µX .

µX(E) = P (X = (X1, . . . , Xd) ∈ E)

For a rectangle E = E1 × · · · × Ed, by independence:

µX(E) = µX1(E1) · · ·µXd
(Ed) =

∫
E

F (x)dx

where the density is

F (x) =
d∏
i=1

e−x
2
i /2

√
2π

=
e−‖x‖

2/2

(2π)d/2

Then µAX(E) = P (AX ∈ E) = P (X ∈ A−1E) =
∫
A−1E

F (x)dx. Using the change of
variables y = Ax =⇒ x = A−1y:∫

E

F (A−1y)| detA−1|dy

Since A ∈ O(d), | detA| = | detA−1| = 1 and ‖A−1y‖ = ‖y‖. Thus, the density remains
F (y). Since both random vectors have the same density (which is the product density),
the components of AX are jointly independent as well.

Corollary 1. Let X1, X2 : Ω → R be i.i.d. RVs with N (0, σ2). Then X1 + X2 and
X1 −X2 are i.i.d. with N (0, 2σ2).

Proof Sketch. Consider the scaled vector (X1

σ
, X2

σ
) which is a standard Gaussian vector.

Apply the rotation matrix: [
1√
2

1√
2

1√
2
−1√
2

][
X1

σ
X2

σ

]
=

[
X1+X2

σ
√
2

X1−X2

σ
√
2

]

The result is a Standard Gaussian vector. Thus, X1+X2

σ
√
2

and X1−X2

σ
√
2

are independent

standard normals, implying X1+X2 and X1−X2 are independent with variance (σ
√

2)2 =
2σ2.

Proposition 1. If X, Y are d-dimensional Gaussian random vectors such that E(X) =

E(Y ) and cov(X) = cov(Y ), then X
d
= Y (they have the same distribution).

Proof Sketch. Let XT = AXT
1 + bT and Y T = BXT

2 + cT . We have E(X) = b and
E(Y ) = c, so b = c. Assume E(X) = 0 for simplicity. Thus XT = AXT

1 and Y T = BXT
2 .

A ∈ Mat(d×m) and B ∈ Mat(d× k). WLOG assume m ≤ k. By extending A and XT
1

by adding zeros, we may assume A,B ∈ Mat(d×k). Let A1, . . . , Ad be the rows of A and
B1, . . . , Bd be the rows of B. Let A = span{Ai} ⊂ Rk and B = span{Bi} ⊂ Rk. Define
the map L : A → B by L(Ai) = Bi. We show L is injective. If

∑
viAi = 0, then:

‖
∑

viAi‖2 = vAATvT = vBBTvT = ‖
∑

viBi‖2 = 0
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Thus L is an isomorphism and preserves the inner product (since (AAT )ij = (BBT )ij). L
can be extended to an orthogonal transformation. Therefore Y T can be written in terms
of a transformed standard Gaussian vector that has the same distribution as X.

Corollary 2. Let Y be a Gaussian random vector (Y T = AXT + bT ). Then the com-
ponents of Y are jointly independent if and only if its covariance matrix is diagonal
(pairwise independent).

Proof Sketch. If independent, the covariance matrix is clearly diagonal. Conversely, if
cov(Y ) is diagonal (say entries σ2

i ), consider a random vector Z with independent com-
ponents N (0, σ2

i ). Z is Gaussian and has the same Mean and Covariance as Y . By the

Proposition, Y
d
= Z. Since Z has independent entries, so does Y .

Brownian Motion

Theorem 1 (Wiener, 1923). The Standard Brownian Motion exists. That is, there exists
a random process B : [0,∞)× Ω→ R such that:

1. B(0) = 0 almost surely.

2. Independent increments: For 0 ≤ t1 < t2 < · · · < tk, the increments B(ti+1)−B(ti)
are independent.

3. Stationary Gaussian increments: B(t)−B(s) ∼ N (0, t− s) for t > s.

4. t 7→ B(t) is continuous almost surely.

Construction of Brownian Motion on [0, 1]

Proof Sketch. We construct BM as a random element in C[0, 1], as the uniform limit of a
sequence of continuous functions defined on Dyadic Numbers. LetDn =

{
k
2n

: 0 ≤ k ≤ 2n
}

.
Note that Dn ⊂ Dn+1. Let D =

⋃
n≥0Dn. We will define B(d) for all d ∈ D. Let {Zd}d∈D

be independent N (0, 1) random variables.
Step n = 0: D0 = {0, 1}. Define B(0) = 0 and B(1) = Z1 ∼ N (0, 1). The increment

is B(1)−B(0) = Z1.
Step n = 1: D1 = {0, 1, 1

2
}. Define:

B

(
1

2

)
=
B(1) +B(0)

2
+
Z1/2

2
=
Z1

2
+
Z1/2

2

Increments:

• B(1)−B(1/2) = Z1− (Z1

2
+

Z1/2

2
) = Z1

2
− Z1/2

2
. By Lemma, this is ∼ N (0, 1

4
+ 1

4
) =

N (0, 1
2
).

• B(1/2)−B(0) = Z1

2
+

Z1/2

2
. By Lemma, this is ∼ N (0, 1

2
).

Also, these increments are independent (sum and difference of independent Gaussians).
Step n = 2: D2 = {0, 1, 1

2
, 1
4
, 3
4
}.

B

(
1

4

)
=
B(1/2) +B(0)

2
+
Z1/4

22
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B

(
3

4

)
=
B(1) +B(1/2)

2
+
Z3/4

22

Let us check the increments. First, for the interval [0, 1
4
]:

B

(
1

22

)
−B(0) =

Z1

4
+
Z1/2

4
+
Z1/22

23/2
∼ N

(
0,

1

4

)
Next, for the interval [1

4
, 1
2
]:

B

(
1

2

)
−B

(
1

22

)
=
Z1

2
+
Z1/2

2
−
(
Z1

4
+
Z1/2

4
+
Z1/22

23/2

)
=
Z1

4
+
Z1/2

4
−
Z1/22

23/2

By Lemma, those two increments are i.i.d with N
(
0, 1

4

)
.

Now consider the wider interval increment B(1)−B
(

1
22

)
:

B(1)−B
(

1

22

)
= Z1 −

(
Z1

4
+
Z1/2

4
+
Z1/22

23/2

)
=

3Z1

4
−
Z1/2

4
−
Z1/22

23/2

Each of the terms have a different variance but the total variance is 3
4
.

Finally, consider B( 3
22

)−B(0):

B

(
3

22

)
−B(0) =

3Z1

4
+
Z1/2

4
+
Z3/22

23/2

This is the same as above with variance 3
4
. The independence of those increments follows

from the fact that they are two linear combinations of 3 independent terms.

General Step: Inductively define B(d) for d ∈ Dn \ Dn−1.

B(d) =
B(d+ 1

2n
) +B(d− 1

2n
)

2
+

Zd
2(n+1)/2

This ensures increments are pairwise (and jointly) independent with the correct dis-
tribution.

Functional Representation

Let us define functions Fn(t).

F0(t) =


0 t = 0

Z1 t = 1

Linear in between

= tZ1

F1(t) =


0 t ∈ D0
Z1/2

2
t = 1

2

Linear in between
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Fn(t) =


0 t ∈ Dn−1

Zd

2(n+1)/2 t ∈ Dn \ Dn−1
Linear in between

Define the partial sum:

Sn(d) =
n∑
i=0

Fi(d)

Since for d ∈ Dn, Fm(d) = 0 for all m > n, the sum stabilizes. We estimate the limit
S(t) =

∑∞
n=0 Fn(t) for t ∈ [0, 1]. If this sum converges uniformly, the Brownian Motion

is well-defined and continuous.
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