Probability Lecture Notes
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Brownian Motion
Theorem 1 (Wiener, 1923). (Check Last Lecture) t — B(t) is continuous almost surely (a.s.), i.e.,
P{w € Q:t— B(t,w) is continuous}) =1
Proof Sketch. (Continuation) We constructed B(d) for d € D, where D is the set of dyadic numbers in
[0, 1].
D= UD”, Dn:{k:OSkSQ"}
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Construction: Let Z4 be i.i.d. ~ N(0,1).
On Dy = {0, 1}, assume B(0) = 0. Let B(1) = Z;.
For d € D, \ D,_1, we define B(d) assuming B(d) is defined for D,_1. Let d=,d™ € D, _1 be the
neighbors of d in D,,_1. We define:
Bd")+B(d™)  Zy

B(d) =
(d) 5 +2"T“

The set {B(d) : d € D} satisfies the independent, normally distributed increments conditions on D.
Condition 1 of BM holds for times in D.

We extend B(d) to R by linear interpolation. Since D is countable, we define a function B(t) for
t € [0,1] by actually interpolating the points {B(d) : d € D,,} and passing to the limit as n — oo.

Define F,, : [0,1] — R. For n = 0:

0 t=20
Fo(t)=1< 7, t=1
linear in between
For all n > 0:
0 te D, 1
Fo(t) = Q(H.ZF% te D\ Dp1

linear in between
Note that for m > n and d € D,,, F,,,(d) = 0 by definition.
Claim 1. For alld € D:

Indeed, using induction. n = 0 satisfies the condition. Let d € D,, \ Dy, —1.

SFd) = 3 Rd) + Fa(d)

=0 1=0

By hypothesis, the sum up to n — 1 is linear on the interval [d~,d"], so at the midpoint d, it is the
average:
B(di) + B(dJr) n Zg

2 2"




= B(d) (by definition)
By induction, the hypothesis holds. Therefore,

This suggests the following definition:
B(t) =Y Fu(t), Vte[0,1]

n>0

We verify if the series converges uniformly. Since F), are continuous, if the convergence is uniform, B(t)
will be continuous.

Claim 2. The series converges almost surely.

Observation: If X ~ N(0,1), then VA > 0:

du <2/Oou*§ du 2 [ *L;ro 2 *%2< -3
—e = —e = e e
Vor T A Vor \W2rm A -

(for large A, constant adjusted). Since Zz ~ N(0,1):

u?
2

P(|X|2)\)_2/:oe

c2n
P(|Z4] > ev/n) <e =

We consider the event where maxqep, |Z4| > cv/n.

+o0 foo
Y PEd€ Dy [|Za Zevn) <> Y P(|Za = cv/n)

n=0 n=0deD,,

+oo 5 +oo 5
< E 2n67%n _ E 671(1112767
n=0 n=0

For convergence, we require In2 < % = ¢ > v2In2. By the Borel-Cantelli lemma, for almost every w,
there exists an N(w) € N such that if n > N(w), then the event {3d € D,, : |Z4] > ¢y/n} does not hold.
Therefore, for almost every w, for n > N(w):

1
sup |F,(t)] < evn—r
t€[0,1] 272

This implies:

1
2

neN

Since F,,’s are continuous on [0, 1], by the Weierstrass M-test, ZZ:{) F,(t) converges uniformly to a
continuous function B(t).

Exercise 1. Let (X,)nen be a sequence of Gaussian random vectors, and assume that X, — X almost
surely. If E[X,] — b and cov(X,) — X (where X,,’s are assumed to be d-dimensional), then X is a
Gaussian random vector with mean b and covariance matriz 3. i.e., E[X] =b and cov(X) = X. [Hint:
For simplicity, assume b =0, and means E[X,,] = 0].

It remains to verify the increments property for B(t), t € [0,1]. Set 0 < t; < t2 < -+ < tp—1 <
t, € [0,1]. Since the set D is dense in [0, 1], there exists a sequence ¢; , * t; where ¢;, € D. Consider
the increment vectors X = (B(tiy1k) — B(tix) | 1 <i<n). X = (B(tit1) —B(t:) | 1 <i<n). We
assert that X — X almost surely because B is continuous almost surely. Also E[X}] = 0, cov(Xy) =
diag(ti41,k — ti k) — diag(t;y1 — ¢;). Remark that we meet the conditions of exercise (!). It follows that
X is a Gaussian random vector of mean 0 and cov(X) = diag(¢;+1 — t;). Since the covariance matrix is
diagonal, the entries of X are independent. Therefore, condition 1 of BM holds.

We have constructed BM on [0, 1] as a random function B : @ — (C([0,1]),]] - ||oo)- O
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Figure 1: Glueing of independent Brownian Motions
Glueing Brownian Motions
Let By, B1,...,By,... be a sequence of i.i.d. Brownian motions (i.e., sequence of measurable functions)
on [0,1]. We glue them continuously into a function on [0, 4+00).
We pose:

[t]—1
B(t) =By t—[t)+ Y Bi(1)
=0

One can check that this is a glueing. [¢] is the integer part of ¢.

Properties of Brownian Motion

1. Hlder Continuity: Brownian motion ¢ — B(t) is actually locally Hlder continuous with Hlder
exponent « < 1/2 (meaning this applies when restricted to a compact interval like [0,1]). More
precisely, given « < 1/2, we have |B(t) — B(s)| < Cqu|t — s|* almost surely, V¢, s € [0, 1].

2. Not 1/2-Hlder: BM is not 1/2-Hlder continuous.

3. Nowhere Differentiable: BM is nowhere differentiable almost surely (like the Weierstrass func-
tion). [Theorem of Paley, Wiener, Zygmund 1933].

Random Walks

A random walk is a process (Sp)n>0 where Sp = 0 and the increments S,, — S,,—1 are independent.

So=0, X, =8, — S, are i.i.d. random variables. Assume E[X,,] =0, var(X,,) = 0% > 0, Vn € N (we
can always assume o2 = 1). A random walk is in some sense a discrete BM in that the increments are
independent with mean 0 and variance 1 (but not necessarily normally distributed).

Definitions

Definition 1 (Hlder Continuity). Let M be a metric space. f: M — R is called a-Hlder continuous if
Ve,y e M:
[f(z) = f(y)| < Cd(z,y)*  (a€0,1])

for some C € R7..

e Stopping time filtration: (2, F,P) is a probability space. Replacing discrete time (n) by con-
tinuous time, we get a Filtration § = {F;}+>0, a family of sub-algebras s.t. s <t = Fs C Fy.

e Stopped process: {X(t)};>0 s.t. X(t) is F; measurable.

e Natural filtration F° = {F°(t)};>¢ of a process X = {X; }1>0: FO(t) = o(X(s) | s < t). Clearly,
X is adapted to FO.

e Right continuous filtration of a random process X = {X(¢)}i>0: § = {F() >0, F(t) =
Nysi FO(s) 2 FO(t). § has the property (., F(s) = F(t).

e Adapted stopping time: T : Q — [0, +o0] relative to F = {F(t) }+>0: {T <t} € F(1).

Properties of Adapted Process: 1. X is F-adapted. 2. E[|X(t)]] < oo, Vt. 3. Vs < t,E[X(¢) |
F(s)] = X(s).



Theorems

Exercise 2. Brownian motion is a martingale process relative to its natural filtration.

Hint: Independence of increments gives independence from the past.
E[B(t) = B(s) | F(s)] = E[B(t) = B(s)] = 0 = E[B(t) | F(s)] = B(s).

Definition 2. We say that a random variable X with E[X] = 0, var(X) = 0? < +0o can be embedded
into BM if there exists a stopping time T : Q — [0,400] (adapted to the natural filtration o(B(t))) s.t.
E[T] < +oc0 and B(T) =% X. (Note: X(w) is B(T(w)). When T is fived, B(T) is normal, but when the
time is random, the distribution can be anything reasonable).

Theorem 2 (Skorokhod’s Embedding Theorem). Any random variable X with E[X] =0 and E[X?] <
400 can be embedded into a standard BM.

Theorem 3. Let S, = X; + - + X,, be a random walk with E[X;] = 0, E[X?] = 1. Then there
exists a sequence of stopping times T, with respect to F* s.t. {B(T},) | n > 0} has the distribution of
{Sn | n>0}.



Functional CLT
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Figure 2: Random Walk Interpolation
The limit of the interpolation between points of the random walk is (in distribution) the BM.

Setup for Functional CLTs: Let S, = X; +--- 4+ X,, be a random walk where X}, are i.i.d. with
E[X)] = 0 and E[X?] = 1. Let S(t) be a continuous random function on [0,+0c0) that interpolates
{8, | n > 0}, that is:

S(t) = Spey + (€ = [E)(Sp)41 — Sey)

Define a sequence of random functions S} : [0,1] — R:
S(nt)
NG

Observe for t = 1, the CLT implies S} (1) = S—\/% 4 N(0,1).

Sa(t) =

Theorem 4 (Donsker’s Invariance Principle / Functional CLT).

S*(t) L B(t), Vtelo,1]

Observations: If X, % X and g is continuous, then ¢(X,) 4, g(X). What we mean by this is
convergence in distribution in the space C(]0, 1]), where B € C(]0, 1]) and S}, are random functions with
values in C([0,1]).

s: 4 B
as random variables in C([0, 1]). i.e., not just convergence for every fixed ¢ € [0, 1], but as a sequence of

functions in C([0,1]). In particular, g(S;) 4 g(B) for any ¢ : C([0,1]) — R continuous.



