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Brownian Motion

Theorem 1 (Wiener, 1923). (Check Last Lecture) t 7→ B(t) is continuous almost surely (a.s.), i.e.,

P ({ω ∈ Ω : t 7→ B(t, ω) is continuous}) = 1

Proof Sketch. (Continuation) We constructed B(d) for d ∈ D, where D is the set of dyadic numbers in
[0, 1].

D =
⋃
n≥0

Dn, Dn =

{
k

2n
: 0 ≤ k ≤ 2n

}

Construction: Let Zd be i.i.d. ∼ N (0, 1).
On D0 = {0, 1}, assume B(0) = 0. Let B(1) = Z1.
For d ∈ Dn \Dn−1, we define B(d) assuming B(d) is defined for Dn−1. Let d−, d+ ∈ Dn−1 be the

neighbors of d in Dn−1. We define:

B(d) =
B(d+) +B(d−)

2
+

Zd

2
n+1
2

The set {B(d) : d ∈ D} satisfies the independent, normally distributed increments conditions on D.
Condition 1 of BM holds for times in D.

We extend B(d) to R by linear interpolation. Since D is countable, we define a function B(t) for
t ∈ [0, 1] by actually interpolating the points {B(d) : d ∈ Dn} and passing to the limit as n→∞.

Define Fn : [0, 1]→ R. For n = 0:

F0(t) =


0 t = 0

Z1 t = 1

linear in between

For all n ≥ 0:

Fn(t) =


0 t ∈ Dn−1

Zd
2(n+1)/2 t ∈ Dn \Dn−1

linear in between

Note that for m > n and d ∈ Dn, Fm(d) = 0 by definition.

Claim 1. For all d ∈ D:

Bn(d) =

n∑
i=0

Fi(d)

Indeed, using induction. n = 0 satisfies the condition. Let d ∈ Dn \Dn−1.

n∑
i=0

Fi(d) =

n−1∑
i=0

Fi(d) + Fn(d)

By hypothesis, the sum up to n − 1 is linear on the interval [d−, d+], so at the midpoint d, it is the
average:

=
B(d−) +B(d+)

2
+

Zd

2
n+1
2

1



= B(d) (by definition)

By induction, the hypothesis holds. Therefore,

B(d) =

∞∑
n=0

Fn(d), ∀d ∈ D

This suggests the following definition:

B(t) =
∑
n≥0

Fn(t), ∀t ∈ [0, 1]

We verify if the series converges uniformly. Since Fn are continuous, if the convergence is uniform, B(t)
will be continuous.

Claim 2. The series converges almost surely.

Observation: If X ∼ N (0, 1), then ∀λ > 0:

P (|X| ≥ λ) = 2

∫ ∞
λ

e−
u2

2
du√
2π
≤ 2

∫ ∞
λ

u

λ
e−

u2

2
du√
2π

=
2

λ
√

2π

[
−e−u

2

2

]∞
λ

=
2

λ
√

2π
e−

λ2

2 ≤ e−λ
2

2

(for large λ, constant adjusted). Since Zd ∼ N (0, 1):

P (|Zd| ≥ c
√
n) ≤ e− c

2n
2

We consider the event where maxd∈Dn |Zd| ≥ c
√
n.

+∞∑
n=0

P (∃d ∈ Dn | |Zd| ≥ c
√
n) ≤

+∞∑
n=0

∑
d∈Dn

P (|Zd| ≥ c
√
n)

≤
+∞∑
n=0

2ne−
c2

2 n =

+∞∑
n=0

en(ln 2− c22 )

For convergence, we require ln 2 < c2

2 ⇒ c >
√

2 ln 2. By the Borel-Cantelli lemma, for almost every ω,
there exists an N(ω) ∈ N such that if n ≥ N(ω), then the event {∃d ∈ Dn : |Zd| ≥ c

√
n} does not hold.

Therefore, for almost every ω, for n ≥ N(ω):

sup
t∈[0,1]

|Fn(t)| ≤ c
√
n

1

2
n+1
2

This implies: ∑
n∈N

c
√
n

1

2
n+1
2

< +∞

Since Fn’s are continuous on [0, 1], by the Weierstrass M -test,
∑+∞
n=0 Fn(t) converges uniformly to a

continuous function B(t).

Exercise 1. Let (Xn)n∈N be a sequence of Gaussian random vectors, and assume that Xn → X almost
surely. If E[Xn] → b and cov(Xn) → Σ (where Xn’s are assumed to be d-dimensional), then X is a
Gaussian random vector with mean b and covariance matrix Σ. i.e., E[X] = b and cov(X) = Σ. [Hint:
For simplicity, assume b = 0, and means E[Xn] = 0].

It remains to verify the increments property for B(t), t ∈ [0, 1]. Set 0 < t1 < t2 < · · · < tn−1 <
tn ∈ [0, 1]. Since the set D is dense in [0, 1], there exists a sequence ti,k ↗ ti where ti,k ∈ D. Consider
the increment vectors Xk = (B(ti+1,k) − B(ti,k) | 1 ≤ i < n). X = (B(ti+1) − B(ti) | 1 ≤ i < n). We
assert that Xk → X almost surely because B is continuous almost surely. Also E[Xk] = 0, cov(Xk) =
diag(ti+1,k − ti,k)→ diag(ti+1 − ti). Remark that we meet the conditions of exercise (!). It follows that
X is a Gaussian random vector of mean 0 and cov(X) = diag(ti+1 − ti). Since the covariance matrix is
diagonal, the entries of X are independent. Therefore, condition 1 of BM holds.

We have constructed BM on [0, 1] as a random function B : Ω→ (C([0, 1]), || · ||∞).
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Figure 1: Glueing of independent Brownian Motions

Glueing Brownian Motions

Let B0, B1, . . . , Bn, . . . be a sequence of i.i.d. Brownian motions (i.e., sequence of measurable functions)
on [0, 1]. We glue them continuously into a function on [0,+∞).

We pose:

B(t) = Bbtc(t− btc) +

btc−1∑
i=0

Bi(1)

One can check that this is a glueing. btc is the integer part of t.

Properties of Brownian Motion

1. Hlder Continuity: Brownian motion t 7→ B(t) is actually locally Hlder continuous with Hlder
exponent α < 1/2 (meaning this applies when restricted to a compact interval like [0, 1]). More
precisely, given α < 1/2, we have |B(t)−B(s)| ≤ Cα,ω|t− s|α almost surely, ∀t, s ∈ [0, 1].

2. Not 1/2-Hlder: BM is not 1/2-Hlder continuous.

3. Nowhere Differentiable: BM is nowhere differentiable almost surely (like the Weierstrass func-
tion). [Theorem of Paley, Wiener, Zygmund 1933].

Random Walks

A random walk is a process (Sn)n≥0 where S0 = 0 and the increments Sn − Sn−1 are independent.

Sn = X1 + · · ·+Xn

S0 = 0, Xn = Sn − Sn−1 are i.i.d. random variables. Assume E[Xn] = 0, var(Xn) = σ2 > 0, ∀n ∈ N (we
can always assume σ2 = 1). A random walk is in some sense a discrete BM in that the increments are
independent with mean 0 and variance 1 (but not necessarily normally distributed).

Definitions

Definition 1 (Hlder Continuity). Let M be a metric space. f : M → R is called α-Hlder continuous if
∀x, y ∈M :

|f(x)− f(y)| ≤ Cd(x, y)α (α ∈ [0, 1])

for some C ∈ R∗+.

• Stopping time filtration: (Ω,F ,P) is a probability space. Replacing discrete time (n) by con-
tinuous time, we get a Filtration F = {Ft}t≥0, a family of sub-algebras s.t. s < t =⇒ Fs ⊆ Ft.

• Stopped process: {X(t)}t≥0 s.t. X(t) is Ft measurable.

• Natural filtration F0 = {F0(t)}t≥0 of a process X = {Xt}t≥0: F0(t) = σ(X(s) | s ≤ t). Clearly,
X is adapted to F0.

• Right continuous filtration of a random process X = {X(t)}t≥0: F = {F(t)}t≥0, F(t) =⋂
s>t F0(s) ⊇ F0(t). F has the property

⋂
s>t F(s) = F(t).

• Adapted stopping time: T : Ω→ [0,+∞] relative to F = {F(t)}t≥0: {T ≤ t} ∈ F(t).

Properties of Adapted Process: 1. X is F-adapted. 2. E[|X(t)|] < ∞, ∀t. 3. ∀s < t,E[X(t) |
F(s)] = X(s).
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Theorems

Exercise 2. Brownian motion is a martingale process relative to its natural filtration.

Hint: Independence of increments gives independence from the past.
E[B(t)−B(s) | F(s)] = E[B(t)−B(s)] = 0 =⇒ E[B(t) | F(s)] = B(s).

Definition 2. We say that a random variable X with E[X] = 0, var(X) = σ2 < +∞ can be embedded
into BM if there exists a stopping time T : Ω → [0,+∞] (adapted to the natural filtration σ(B(t))) s.t.
E[T ] < +∞ and B(T ) =d X. (Note: X(ω) is B(T (ω)). When T is fixed, B(T ) is normal, but when the
time is random, the distribution can be anything reasonable).

Theorem 2 (Skorokhod’s Embedding Theorem). Any random variable X with E[X] = 0 and E[X2] <
+∞ can be embedded into a standard BM.

Theorem 3. Let Sn = X1 + · · · + Xn be a random walk with E[X1] = 0, E[X2
1 ] = 1. Then there

exists a sequence of stopping times Tn with respect to F+ s.t. {B(Tn) | n ≥ 0} has the distribution of
{Sn | n ≥ 0}.
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Functional CLT
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Figure 2: Random Walk Interpolation

The limit of the interpolation between points of the random walk is (in distribution) the BM.

Setup for Functional CLTs: Let Sn = X1 + · · · + Xn be a random walk where Xk are i.i.d. with
E[Xk] = 0 and E[X2

k ] = 1. Let S(t) be a continuous random function on [0,+∞) that interpolates
{Sn | n ≥ 0}, that is:

S(t) = Sbtc + (t− btc)(Sbtc+1 − Sbtc)

Define a sequence of random functions S∗n : [0, 1]→ R:

S∗n(t) =
S(nt)√

n

Observe for t = 1, the CLT implies S∗n(1) = Sn√
n

d−→ N (0, 1).

Theorem 4 (Donsker’s Invariance Principle / Functional CLT).

S∗n(t)
d−→ B(t), ∀t ∈ [0, 1]

Observations: If Xn
d−→ X and g is continuous, then g(Xn)

d−→ g(X). What we mean by this is
convergence in distribution in the space C([0, 1]), where B ∈ C([0, 1]) and S∗n are random functions with
values in C([0, 1]).

S∗n
d−→ B

as random variables in C([0, 1]). i.e., not just convergence for every fixed t ∈ [0, 1], but as a sequence of

functions in C([0, 1]). In particular, g(S∗n)
d−→ g(B) for any g : C([0, 1])→ R continuous.
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