
Probability Theory (M1 2025) IMM Algeria

HOMEWORK ASSIGNMENT FOR PART III

Nota bene. All exercises are due by 24 of January, 2026, sent by email at silviusk@puc-rio.br
in one PDF file per student.

Exercise 1. Show that if X is a random variable such that for some positive numbers M, ε, δ
we have

|X| ≤M a.s. and P
(
|X| ≥ ε

)
≤ δ,

then
E |X| ≤ ε+M δ.

Exercise 2. (the bounded convergence theorem in probability)
Let X1, X2, . . . be a sequence of random variables such that

∀n ≥ 1, |Xn| ≤M a.s. and Xn → X in probability.

Then

(a) |X| ≤M a.s.
(b) EXn → EX.

Exercise 3. (the bounded moments convergence theorem)
Let X1, X2, . . . be a sequence of random variables such that for some p > 1 and M <∞,

E |Xn|p ≤M ∀n ≥ 1 and Xn → X in probability.

Then
EXn → EX.

Exercise 4. (approximation of the cumulative distribution function of a random variable)
Let X1, X2, . . . be i.i.d. copies of a real valued random variable X. Show that for every real

number t the following holds almost surely:

1

n
card {1 ≤ i ≤ n : Xi ≤ t} → P(X ≤ t) as n→∞.

Exercise 5. Show that if X1, X2, . . . , Xn are i.i.d. copies of a real valued random variable X,
and if M is finite constant, then the truncations

X1 1|X1|≤M , X2 1|X2|≤M , . . . , Xn 1|Xn|≤M

are also independent and identically distributed random variables.

Exercise 6. Let X1, X2, . . . be i.i.d. real valued random variables. Prove that if X1 ≥ 0 a.s.

and EX1 = ∞ then almost surely,
Sn
n

diverges to infinity in probability, in the sense that for

every T <∞,

P
(Sn
n
≥ T

)
→ 1 as n→∞.

Hint: Truncate and use the weak LLN for the truncations. The truncation will have to be
chosen carefully (you may need the monotone convergence theorem for that).
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Exercise 7. (The law of large numbers for triangular arrays).
Let Xi,n, where n ≥ 1 and 1 ≤ i ≤ n be a triangular array of random variables with the

same mean µ. Assume that each row X1,n, . . . , Xn,n consists of independent random variables
and let Sn := X1,n + . . .+Xn,n. Let M be a finite constant. Prove the following:

(a) (weak LLN) If E |Xi,n|2 ≤M for all indices, then Sn

n
→ µ in probability.

(b) (strong LLN) If E |Xi,n|4 ≤M for all indices, then that Sn

n
→ µ a.s.

Exercise 8. Let T be a stopping time adapted to a given filtration.

(a) Prove that if M is a martingale (relative to the given filtration), then the stopped
process MT is also a martingale.

(b) Prove that if A is a predictable process (relative to the given filtration), then te stopped
process AT is also predictable.

Exercise 9. Let C be a predictable and bounded process. Prove that if M is a martingale,
then its martingale transform by C, namely M ∗ C, is a martingale too, and it is null at zero.

Let X be a scalar random variable and let µX be its probability distribution. Compute:

(a) Then mean µ;
(b) The standard deviation σ;
(c) The characteristic function ϕX(t) := E eitX

for the following examples.

Exercise 10. The Bernoulli r.v. with values 1 and −1 with equal probabilities 1
2
.

Exercise 11. The standard normal distribution N(0, 1).

If you do the calculation correctly, you should get ϕ(t) = e−t
2/2.

Exercise 12. The uniform distribution of the interval (0, 1).

The next problem will tell us that under appropriate assumptions, derivates and integrals
may be interchanged (just like limits and integrals may be interchanged). It was needed in the
proof of the central limit theorem.

Exercise 13. Let (Ω,F , µ) be a measure space. Let I ⊂ R be an interval. Given any absolutely
integrable function f : I × Ω→ C, define

ϕ(t) :=

∫
Ω

f(t, ω)dµ(ω).

We assume that for every ω ∈ Ω, the function I 3 t 7→ f(t, ω) ∈ C is differentiable at every
point t ∈ I and that its derivative satisfies∣∣∣ d

dt
f(t, ω)

∣∣∣ ≤ g(ω) for all t ∈ I,

where g ∈ L1(Ω, µ).
Prove that ϕ is differentiable at all points t ∈ I and

d

dt
ϕ(t) =

∫
Ω

d

dt
f(t, ω) dµ(ω).

Hint: Interpret the derivative as a limit and use dominated convergence.
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Exercise 14. Prove that if X : Ω→ R is a random variable with E |X| <∞, then its charac-
teristic function ϕX(t) is differentiable everywhere and

ϕ′X(t) = iE (XeitX).

Hint: Apply the previous exercise to the function f : R×Ω→ C, defined by f(t, ω) := ei tX(ω).

Exercise 15. Let S be a metric space and let µ be a Borel probability measure on S. Prove
that if g : S → R is a continuous function, then the set{

t ∈ R : µ{g = t} > 0
}

is at most countable.

Exercise 16. Let (Xn)n be a sequence of Gaussian random vectors. Assume that EXn → b
and cov(Xn)→ C as n→∞. Prove that if Xn → X a.s. then X is a Gaussian random vector
with EX = b and cov(X) = C.

Exercise 17. In the construction of the Brownian motion done in class, when we established
the independent increments property for dyadic times d ∈ D, we actually only treated the
particular cases of times in D1 and D2. Prove the general case by induction.

Exercise 18. Let S be a metric space, endowed with the Borel σ-algebra. By definition, a
sequence (Xn)n of random values with values in S converges in distribution to another S-valued
random variable X if µXn → µX weakly as n→∞. Recall that µX is the probability measure
on S given by µX(A) = P(X ∈ A).

Prove that if Xn =⇒ X and F : S → R is continuous, then F (Xn) =⇒ F (X).

Exercise 19. Let (Sn)n≥0 be a random walk with S0 = 0 and independent, identically dis-
tributed increments with mean 0 and variance 1. Define the process

Mn := max{S0, S1, . . . , Sn}.
Use the functional CLT (Donsker’s invariance principle) to prove that for every λ > 0, we

have
lim
n→∞

P(Mn ≥ λ
√
n) = P( sup

t∈[0,1]

B(t) ≥ λ).

Observation. It turns out that the limit above has a closed form formula, namely

P( sup
t∈[0,1]

B(t) ≥ λ) = 2P(B(t) ≥ λ) = 2

∫ ∞
λ

e−x
2/2 dx√

2π
,

but this is a property of the Brownian motion that we have not studied (it is called the reflection
principle).

Exercise 20. Let (M,d) and (N, d) be two metric spaces, let V ⊂M be a subset (say a ball)
and let fn : M → N , n ≥ 1, be a sequence of functions. Assume the following:

(i) The sequence {fn}n converges uniformly on V to a function f at an exponential rate,
i.e. for some c > 0 we have

d(fn(a), f(a)) ≤ e−c n for all a ∈ V and for all n ≥ 1 .

(ii) There is C > 0 such that for all a, b ∈ V and for all n ≥ 1,

if d(a, b) ≤ e−C n then d(fn(a), fn(b)) ≤ e−c n .

Then for all x, y ∈ V we have

d(f(x), f(y)) ≤ 3 ec d(x, y)
c
C ,

that is, f is Hölder continuous on V with Hölder exponent α = c
C

.
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