CAPÍTULO 3. NÚMEROS RACIONAIS

Sumário

1.	O conjunto de numeros racionais	1
2.	Corpos	3
3.	Corpos ordenados	6
4.	Intervalos	δ
4.1.	. O valor absoluto	10
5.	Corpos arquimedianos	11
6.	Os números racionais não são suficientes	12

1. O CONJUNTO DE NÚMEROS RACIONAIS

Números racionais são intuitivamente quocientes de números inteiros $\frac{m}{n}$, onde $m, n \in \mathbb{Z}$ e $n \neq 0$.

Observe que Os quocientes $\frac{2}{3}$, $\frac{4}{6}$, $\frac{-6}{-9}$ etc representam o mesmo número racional.

Vamos formalizar este conceito.

Primeiro, dado um conjunto X e uma relação de equivalência \sim em X, se $x \in X$ denotamos por

$$[x] = \{y \in X : y \sim x\}$$

o conjunto de todos os elementos de X equivalentes a x, ou seja, a classe de equivalência de x.

Observe que todo elemento de X pertence à sua própria classe de equivalência:

$$x \sim x$$
, então $x \in [x]$

Além disso, se $x \sim y$ então $y \sim x$ e [x] = [y].

Denotamos por X/\sim o conjunto de todas as classes de equivalência (o conjunto quociente), ou seja,

$$X/\sim:=\{[x]\colon x\in X\}.$$

No produto cartesiano

$$\mathbb{Z} \times \mathbb{Z}^* = \{ (m, n) : m, n \in \mathbb{Z}, n \neq 0 \},\$$

definimos a relação

$$(m,n) \sim (m',n')$$
 se $m \cdot n' = n \cdot m'$

Por exemplo:

 $(2,3) \sim (4,6)$ porque $2 \times 6 = 3 \times 4$

$$(4,6) \sim (-6,-9)$$
 porque $4 \times (-9) = 6 \times (-6)$.

Acontece que \sim é uma relação de equivalência em $\mathbb{Z} \times \mathbb{Z}^*$.

Denotamos o conjunto de classes de equivalência

$$\mathbb{Z} \times \mathbb{Z}^* / \sim \text{ por } \mathbb{Q},$$

e o chamamos do conjunto dos números racionais.

Denotamos a classe de equivalência $[(m,n)] \in \mathbb{Z} \times \mathbb{Z}^*$ por $\frac{m}{n}$.

Assim, um número racional é uma relação de equivalência de pares de números inteiros (m, n) que são propositionorcionais.

Exemplo 1.1.
$$\frac{2}{3} = \frac{4}{6}$$
 porque $2 \times 6 = 3 \times 4$. Similarmente, $\frac{4}{6} = \frac{-6}{-9}$ porque $4 \times (-9) = 6 \times (-6)$.

Definimos as operações algébricas entre números racionais como seguinte.

■ Adição.

$$\frac{m}{n} + \frac{p}{q} \stackrel{\text{def}}{=} \frac{m \cdot q + n \cdot p}{n \cdot q} \,.$$

A adição é bem definida, no sentido que se $(m,n) \sim (m',n')$ e $(p,q) \sim (p',q')$ então

$$(m \cdot q + n \cdot p, n \cdot q) \sim (m' \cdot q' + n' \cdot p', n' \cdot q').$$

Multiplicação.

$$\frac{m}{n} \cdot \frac{p}{q} = \frac{m \cdot p}{n \cdot q} \,.$$

A multiplicação é bem definida, no sentido que se $(m,n) \sim (m',n')$ e $(p,q) \sim (p',q')$ então $(m \cdot p, n \cdot q) \sim (m' \cdot p', n' \cdot q')$.

De fato,

$$(m,n) \sim (m',n') \Rightarrow m \cdot n' = n \cdot m'$$

 $(p,q) \sim (p',q') \Rightarrow p \cdot q' = q \cdot p'$

Multiplicando as duas identidades acima, tem-se

$$(m\cdot n')\cdot (p\cdot q')=(n\cdot n')\cdot (q\cdot p')$$

Usando as propositionriedades básicas das operações com números inteiros, concluímos que

$$(m \cdot p) \cdot (n' \cdot q') = (n \cdot q) \cdot (n' \cdot p'),$$

mostrando que $(m \cdot p, n \cdot q) \sim (m' \cdot p', n' \cdot q').$

A adição e multiplicação de números racionais satisfazem as proposition riedades conhecidas (comutatividade, associatividade, elemento neutro e inverso, distributividade), então $\mathbb Q$ é um corpo.

Além disso, definimos

е

$$\frac{m}{n} \ge 0 \text{ se } m \cdot n \ge 0,$$

 $\frac{m}{n} \le \frac{p}{q} \text{ se } \frac{p}{q} - \frac{m}{n} \ge 0.$

Então " \leq " é uma relação de ordem total em $\mathbb Q$ compatível com as operações algébricas, tornando $\mathbb Q$ um corpo ordenado.

Lema 1.2. \mathbb{Q} é um conjunto enumerável infinito.

Demonstração. Como \mathbb{Z} e \mathbb{Z}^* são enumeráveis, o produto cartesiano $\mathbb{Z} \times \mathbb{Z}^*$ também é enumerável.

Dado um número racional r, seja $\frac{m}{n}$ sua representação como quociente tal que n>0 e $m,\,n$ não têm nenhum divisor em comum.

Por exemplo, para o número $-\frac{9}{6}$ escolhemos a representação $\frac{-3}{2}$.

A função $f: \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}^*$ dada por f(r) = (m, n), onde $\frac{m}{n}$ é a representação de r descrita acima, é claramente injetiva.

Como $\mathbb{Z} \times \mathbb{Z}^*$ é enumerável, por um teorema anterior, \mathbb{Q} também é.

2. Corpos

Um conjunto não vazio K, munido de duas operações binárias + e \cdot , chamadas de adição e multiplicação, é um corpo se as seguintes propositionriedades (ou axiomas) são satisfeitas:

Axiomas da adição:

1) Associatividade: para todo $x, y, z \in K$,

$$(x+y) + z = x + (y+z)$$

2) Comutatividade: para todo $x, y \in K$,

$$x + y = y + x$$

3) Elemento neutro: existe um elemento $0 \in K$ tal que

$$x + 0 = x$$
 para todo $x \in K$

4) Elemento inverso (ou simétrico): para todo $x \in K$ existe um elemento $-x \in K$ tal que

$$x + (-x) = 0$$

Axiomas da multiplicação:

5) Associatividade: para todo $x, y, z \in K$,

$$(x \cdot y) \cdot z = x \cdot (y \cdot z).$$

6) Comutatividade: para todo $x, y \in K$,

$$x \cdot y = y \cdot x$$
.

7) Elemento neutro: existe um elemento $1 \in K$ tal que

$$x \cdot 1 = x$$
 para todo $x \in K$.

8) Inverso multiplicativo: para todo $x \in K$ existe um elemento $x^{-1} \in K$ tal que

$$x \cdot x^{-1} = 1.$$

9) Axioma da distributividade: para todo $x, y, z \in K$,

$$x \cdot (y+z) = x \cdot y + x \cdot z.$$

Observação. Os elementos neutros para adição e multiplicação são únicos.

De fato, se x + 0 = x e x + 0' = x para todo $x \in K$, então

$$0' + 0 = 0'$$

e

$$0 + 0' = 0$$

Mas 0' + 0 = 0 + 0', logo 0' = 0.

Similarmente para multiplicação.

Observação. $x \cdot 0 = 0$ para todo $x \in K$. De fato, 0 + 0 = 0, então para todo $x \in K$,

$$x \cdot (0+0) = x \cdot 0$$

logo

$$x \cdot 0 + x \cdot 0 = x \cdot 0$$

Somando $-x \cdot 0$ nos dois lados,

$$(-x \cdot 0 + x \cdot 0) + x \cdot 0 = -x \cdot 0 + x \cdot 0$$

$$\Rightarrow 0 + x \cdot 0 = 0$$

$$\Rightarrow x \cdot 0 = 0$$

Observação. O inverso aditivo e multiplicativo são únicos.

De fato, se x + y = 0 e x + z = 0, então

$$z + (x + y) = z + 0$$

$$\Rightarrow (z+x)+y=z$$

$$\Rightarrow (x+z) + y = z$$

$$\Rightarrow 0 + y = z$$

$$\Rightarrow y = z$$
.

Similarmente para produto.

Observação. Se $x \cdot y = 0$ então x = 0 ou y = 0.

De fato, se $x \neq 0$, então x tem um inverso multiplicativo x^{-1} . Logo

$$x \cdot y = 0 \Rightarrow x^{-1} \cdot (x \cdot y) = x^{-1} \cdot 0$$

$$\Rightarrow (x^{-1} \cdot x) \cdot y = 0$$

$$\Rightarrow 1 \cdot y = 0$$

$$\Rightarrow y = 0$$

Observação. Se 1=0 então x=0 para todo $x\in K$, ou seja, $K=\{0\}$.

De fato, se $x \in K$ então

$$x = x \cdot 1 = x \cdot 0 = 0.$$

A partir de agora vamos sempre supor que $1 \neq 0$.

Exemplo: Q é um corpo. Deixamos a verificação dos axiomas como exercício.

Exemplo: Seja $\mathbb{Z}_2 = \{0, 1\}$, munido da soma e do produto módulo 2. Mais precisamente, as tabelas de adição e multiplicação de elementos em \mathbb{Z}_2 são:

Então \mathbb{Z}_2 é um corpo, onde 0 é o elemento neutro para + e 1 é o elemento neutro para \cdot (exercício).

Exemplo: Seja $\mathbb{Z}_3 = \{0, 1, 2\}$ com a adição e multiplicação módulo 3. Por exemplo,

$$1+2=3 \mod 3=0$$
,

$$2 + 2 = 4 \mod 3 = 1$$
,

$$2 \cdot 1 = 2 \mod 3 = 2$$
.

Então \mathbb{Z}_3 é um corpo.

Exemplo. O conjunto $\mathbb{Z}_4 = \{0, 1, 2, 3\}$, munido da soma e do produto módulo 4 não é um corpo.

De fato, $2 \cdot 2 = 4 \mod 4 = 0$.

Num corpo K qualquer, se $x \cdot y = 0$ então x = 0 ou y = 0.

Como $2 \neq 0$, \mathbb{Z}_4 não pode ser um corpo.

Exercício. Mostre que dado $n \in \mathbb{N}$, $n \geq 2$, $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$, munido das operações algébricas módulo n é um corpo se, e somente se, n é um número primo.

Observação. Seja K um corpo. Se $x \in K$ tem-se

$$x + (-x) = 0,$$

então o inverso aditivo de $-x \notin x$, ou seja,

$$-(-x) = x.$$

Além disso,

$$0 = 0 \cdot x = (1 + (-1)) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x,$$

logo

$$(-1) \cdot x = -x.$$

Em particular,

$$(-1) \cdot (-1) = -(-1) = 1.$$

Ademais,

$$(-x) \cdot (-x) = ((-1) \cdot x) \cdot ((-1) \cdot x)$$
$$= (-1) \cdot (-1) \cdot x \cdot x$$
$$= 1 \cdot x^2 = x^2,$$

logo

$$(-x)^2 = x^2,$$

onde $x^2 \stackrel{\text{def}}{=} x \cdot x$.

3. Corpos ordenados

Um corpo ordenado é um corpo K que contém um subconjunto $P \subset K$ com as seguintes propositionriedades:

- (1) Se $x, y \in P$ então $x + y \in P$ e $x \cdot y \in P$.
- (2) Dado $x \in K$, tem-se $x \in P$ ou $-x \in P$. Se $x \in P$ e $-x \in P$ então x = 0.

O conjunto P se chama o subconjunto de elementos não-negativos de K. Ele determina uma relação de ordem como segue:

$$x \le y$$
 se $y - x \in P$.

Em particular, isto significa

$$x \ge 0$$
 se $x = x - 0 \in P$,
 $x < 0$ se $-x = 0 - x \in P$.

- (i) $x \leq x$.
- (ii) Se $x \le y$ e $y \le x$ então x = y.
- (iii) Se $x \le y$ e $y \le z$ então $x \le z$.
- (iv) Se $x \le y$ então $x + z \le y + z$.
- (v) Se $x \le y$ e $z \ge 0$ então $x \cdot z \le y \cdot z$.
- (vi) Para todo $x, y \in K$, tem-se $x \le y$ ou $y \le x$.

Demonstração. (i) x - x = 0 e $0 \in \mathbb{P}$ então $x \in x$.

Temos que $0 \in \mathbb{P}$ porque para todo $x \in K$, $x \in \mathbb{P}$ ou $-x \in \mathbb{P}$. Mas -0 = 0, então $0 \in \mathbb{P}$.

(ii) Se $x \leq y$ então $y - x \in \mathbb{P}$

Se $y \leq x$ então $x - y \in \mathbb{P}$

Mas
$$(x - y) + (y - x) = x + (-y) + y + (-x) = x + 0 + (-x) = 0$$

então y - x = -(x - y)

Logo,
$$x - y \in \mathbb{P}$$
 e $-(x - y) = y - x \in \mathbb{P}$, o que implica $x - y = 0$, e daí, $x = y$.

- (iii) Exercício.
- (iv) Temos que

$$(y+z) - (x+z) = y + z - x - z = y - x$$

Como x < y, y - x > 0, então x + z < y + z.

- (v) Exercício.
- (vi) Sejam $x, y \in K$ e seja

$$a = x - y$$
.

Então $a \in P$ ou $-a \in P$.

Se $a = x - y \in P$ então y < x.

Se
$$-a = -(x - y) = -x + y = y - x \in P$$
 então $x \le y$.

Logo,
$$y \le x$$
 ou $x \le y$.

Proposição 3.2. Seja K um corpo ordenado. Para todo $x \in K$ tem-se

$$x^2 > 0$$
.

Além disso, se $x^2 = 0$ então x = 0.

Em particular, 1 > 0.

Demonstração. Seja $x \in K$. Então $x \ge 0$ ou $-x \ge 0$.

- Se $x \ge 0$ então $x^2 = x \cdot x \ge 0$.
- Se -x > 0 então $x^2 = (-x) \cdot (-x) > 0$.

Logo $x^2 \ge 0$ para todo $x \in K$.

Já sabemos que se $x^2 = x \cdot x = 0$ então x = 0. Como $1 \neq 0$, $1 = 1 \cdot 1 = 1^2 > 0$, logo 1 > 0. \square

Exemplo 3.1. \mathbb{Q} é um corpo ordenado.

Exemplo 3.2. \mathbb{Z}_2 não possui nenhuma relação de ordem compatível com as operações algébricas, ou seja, não é um corpo ordenado.

De fato, num corpo ordenado, 1 > 0. Logo, pela compatibilidade da ordem com a adição, $1+1 \ge 1+0$, então em \mathbb{Z}_2 , $0 \ge 1$, contradição.

Observação 3.1. Se $x, y \ge 0$ e x + y = 0, então x = 0 e y = 0.

De fato, se x+y=0 então y=-x. Como $x\geq 0$ e $-x=y\geq 0$, tem-se x=0 e daí, y=0.

Definição 3.1. Dado $x \in K$, para $n \in \mathbb{N}$ definimos $n \cdot x$ por indução:

$$0 \cdot x = 0$$

$$(n+1) \cdot x = n \cdot x + x$$

Informalmente, se $n \geq 1$,

$$n \cdot x = \underbrace{x + \dots + x}_{n \text{ vezes}}$$

Similarmente, se $x \neq 0$, $n \in \mathbb{N}$, definimos x^n por indução:

$$x^{0} = 1$$

$$x^{n+1} = x^n \cdot x$$

Informalmente, se $n \geq 1$,

$$x^n = \underbrace{x \cdot \dots \cdot x}_{n \text{ vezes}}$$

Se x = 0, $0^n = 0$ para todo $n \ge 1$.

Podemos estender as definições acima para números inteiros negativos. Se $n \in \mathbb{N}$ e $x \in K$,

$$(-n) \cdot x \stackrel{\text{def}}{=} -nx$$

(onde -nx é o inverso aditivo de nx).

Similarmente, para $n \in \mathbb{N}$ e $x \in K$, $x \neq 0$,

$$x^{-n} \stackrel{\text{def}}{=} (x^n)^{-1}$$

(onde $(x^n)^{-1}$ é o inverso multiplicativo de x^n).

Observação 3.2. Seja K um corpo ordenado. Como 0 < 1 onde neste contexto, 0 é o elemento neutro da adição e 1 é o elemento neutro da multiplicação, temos que:

$$0+1 < 1+1$$
, então $1 < 2 \cdot 1$

$$1+1 < 2 \cdot 1 + 1$$
, então $2 \cdot 1 < 3 \cdot 1$

e etc., por indução,

$$0 < 1 < 2 \cdot 1 < 3 \cdot 1 < \cdots < n \cdot 1 < (n+1) \cdot 1 < \cdots$$

Considere a função $f: \mathbb{N} \to K$,

$$f(n) = n \cdot 1.$$

Então claramente f é injetiva: se n < m então $n \cdot 1 < m \cdot 1$, ou seja, f(n) < f(m). Além disso,

$$f(n+1) = (n+1) \cdot 1 = n \cdot 1 + 1 = f(n) + 1,$$

ou seja, o sucessor de n em \mathbb{N} corresponde, via f, a f(n) + 1 em K.

Em outras palavras, o conjunto

$$\mathbb{N}' = f(\mathbb{N}) = \{n \cdot 1 : n \in \mathbb{N}\} \subset K$$

é uma cópia em K do conjunto de números naturais \mathbb{N} , com uma função sucessor

$$s(n \cdot 1) = n \cdot 1 + 1.$$

Portanto, podemos identificar o conjunto \mathbb{N} com sua cópia em K, e pensar, a partir de agora, em \mathbb{N} como subconjunto de K, onde $n = n \cdot 1$.

Além disso, identificando $-n \in \mathbb{Z}$ com $(-n) \cdot 1 = -n \cdot 1 \in K$, temos que

$$\mathbb{Z} \subset K$$
.

Ademais, a função $f: \mathbb{Q} \to K$,

$$f\left(\frac{m}{n}\right) = m \cdot n^{-1}$$

é bem definida, injetiva e preserva as operações algébricas e de ordem.

■ Ser bem definida significa o seguinte:

se
$$\frac{m}{n} = \frac{p}{q}$$
 então $m \cdot n^{-1} = p \cdot q^{-1}$

De fato,

$$\frac{m}{n} = \frac{p}{q} \Rightarrow m \cdot q = n \cdot p$$

$$\Rightarrow m \cdot q \cdot q^{-1} = n \cdot p \cdot q^{-1}$$

$$\Rightarrow m = n \cdot p \cdot q^{-1}$$

$$\Rightarrow m \cdot n^{-1} = n^{-1} \cdot n \cdot p \cdot q^{-1}$$

$$\Rightarrow m \cdot n^{-1} = p \cdot q^{-1}.$$

 \blacksquare Preservar a adição significa: a imagem pela função f de uma soma de números racionais é a soma das suas imagens, ou seja,

$$f\left(\frac{m}{n} + \frac{p}{q}\right) = f\left(\frac{m}{n}\right) + f\left(\frac{p}{q}\right)$$

Similarmente para produto,

$$f\left(\frac{m}{n}\cdot\frac{p}{q}\right) = f\left(\frac{m}{n}\right)\cdot f\left(\frac{p}{q}\right)$$

■ Finalmente, preservar a relação de ordem significa: qualquer desigualdade em \mathbb{Q} , via f leva à mesma em K, ou seja, Se $\frac{m}{n} \leq \frac{p}{q}$ então $f(\frac{m}{n}) \leq f(\frac{p}{q})$.

Deixamos a verificação dessas afirmações como exercícios.

Em conclusão, o conjunto

$$\mathbb{Q}' = f(\mathbb{Q}) = \left\{ f\left(\frac{m}{n}\right) : \frac{m}{n} \in \mathbb{Q} \right\}$$
$$= \left\{ m \cdot n^{-1} : m, n \in \mathbb{Z}, n \neq 0 \right\}$$

é uma cópia (ou uma imagem espelhada) de \mathbb{Q} em K, no sentido de que o conjunto \mathbb{Q}' está em bijeção com \mathbb{Q} , uma bijeção que preserva a estrutura algébrica e de ordem.

Portanto, podemos identificar \mathbb{Q} e \mathbb{Q}' , ou seja, $\frac{m}{n} = m \cdot n^{-1}$, e a partir de agora pensamos em \mathbb{Q} como um subconjunto de K.

Em conclusão, se K é um corpo ordenado, então

$$\mathbb{O} \subset K$$
.

Teorema 3.3. (a desigualdade de Bernoulli) Seja K um corpo ordenado. Então para todo $x \in K$ com x > -1, e para todo $n \in \mathbb{N}$,

$$(1+x)^n \ge 1 + nx.$$

Demonstração. Usamos indução em n.

- n = 0. Neste caso, $(1+x)^0 = 1$ e $1+0 \cdot x = 1+0 = 1$. Como $1 \ge 1$, a desigualdade vale.
- $n \to n+1$. Temos que

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x)$$

 $\geq (1+nx) \cdot (1+x)$ (pela hipótese indutiva)
 $= 1 + nx + x + nx^2$
 $= 1 + (n+1)x + nx^2$
 $\geq 1 + (n+1)x$,

porque $nx^2 \ge 0$.

Pelo princípio da indução, a desigualdade de Bernoulli vale para todo $n \in \mathbb{N}$.

4. Intervalos

Seja K um corpo ordenado. Dados $a, b \in K$, definimos os intervalos limitados (fechados, semi-fechados, abertos):

$$[a,b] = \{x \in K : a \le x \le b\}$$

$$[a,b) = \{x \in K : a \le x < b\}$$

$$(a,b] = \{x \in K : a < x \le b\}$$

$$(a,b) = \{x \in K : a < x < b\}.$$

Além disso, para $a \in K$, definimos os intervalos ilimitados:

$$[a, \infty) = \{x \in K : x \ge a\}$$

$$(a, \infty) = \{x \in K : x > a\}$$

$$(-\infty, a] = \{x \in K : x \le a\}$$

$$(-\infty, a) = \{x \in K : x < a\}.$$

Observe que a interseção de dois intervalos é sempre um intervalo.

Além disso, se I é um intervalo qualquer e $x,y \in I$ com x < y, então para todo $z \in K$ com x < z < y tem-se $z \in I$.

Em particular, como

$$x < \frac{x+y}{2} < y,$$

tem-se $\frac{x+y}{2} \in I$.

Na verdade, a propriedade acima caracteriza intervalos: se I é um subconjunto de K tal que:

$$x, y \in I \text{ e } x < z < y \implies z \in I$$

então I é um intervalo.

4.1. O valor absoluto. Seja K um corpo ordenado. Dado $x \in K$, definimos seu valor absoluto (ou módulo) como sendo

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0. \end{cases}$$

Por exemplo, |7|=7, já que $7\geq 0$ e |-7|=-(-7)=7, já que -7<0. Claramente,

$$|x| \ge 0$$
 para todo $x \in K$

e se |x| = 0 então x = 0.

Além disso,

$$|x| = \max\{x, -x\}.$$

Isto vale porque |x| = x ou -x, dependendo de qual é não-negativo, então de qual é maior. Em particular,

$$x \le |x|$$
 e $-x \le |x|$,

logo,

$$-|x| \le x \le |x|.$$

Observe também (exercício) que

$$|x \cdot y| = |x| \cdot |y|.$$

Lema 4.1. Seja $a \in K$, $a \ge 0$. Então

$$|x| \le a \text{ sse } x \in [-a, a].$$

Similarmente,

$$|x| < a \text{ sse } x \in (-a, a).$$

Demonstração. Como $|x| = \max\{x, -x\}$, temos que

$$|x| \le a$$
 sse $x \le a$ e $-x \le a$.

Mas

$$-x \le a \iff -a \le x.$$

Logo,

$$|x| \le a$$
 sse $x \le a$ e $-a \le x$,

ou seja, sse $x \in [-a, a]$.

Como consequência deste lema, note que dados $c \in K$ e r > 0,

$$|x-c| < r \iff x \in (c-r, c+r).$$

De fato,

$$|x - c| < r \iff -r < x - c < r$$

$$\iff -r + c < x < r + c$$

$$\iff x \in (c - r, c + r).$$

Teorema 4.2 (Desigualdade triangular). Seja K um corpo ordenado. Para todo $x,y \in K$ tem-se

$$|x+y| \le |x| + |y|.$$

Demonstração. Consideremos dois casos: $x + y \ge 0$ ou x + y < 0.

 \blacksquare Se $x+y\geq 0$ então |x+y|=x+y. Como vimos, $x\leq |x|$ e $y\leq |y|$. Logo,

$$|x + y| = x + y < |x| + |y|$$
.

■ Se x + y < 0 então

$$|x + y| = -(x + y) = -x + (-y).$$

Como vimos, $-x \le |x|$ e $-y \le |y|$. Logo,

$$|x + y| = -x + (-y) \le |x| + |y|.$$

Corolário 4.3. Para todo $x, y \in K$,

$$||x| - |y|| \le |x - y|.$$

Demonstração. Escrevemos

x = (x - y) + y, e pela desigualdade triangular aplicada a (x - y) e y,

$$|x| = |(x - y) + y| \le |x - y| + |y|$$

 $\Rightarrow |x| - |y| \le |x - y|.$

Similarmente, y = (y - x) + x

$$\Rightarrow |y| = |(y - x) + x| \le |y - x| + |x|$$

$$\Rightarrow |y| - |x| \le |y - x| = |x - y|.$$

Como

$$||x| - |y|| = |x| - |y|$$
 ou $||x| - |y|| = |y| - |x|$,

a conclusão segue.

5. Corpos arquimedianos

O corpo de números racionais $\mathbb Q$ possui a seguinte propriedade: para todo $r \in \mathbb Q$ existe $n \in \mathbb N$ tal que

$$n > r$$
.

De fato, se $r \leq 0$ então 1 > r, enquanto se r > 0,

$$r = \frac{m}{n} \text{ com } m, n \ge 1.$$

Neste caso, claramente

$$n \ge \frac{n}{m} = r$$
.

Mais geralmente, temos a seguinte definição.

Definição 5.1. Um corpo ordenado K se chama arquimediano se para todo $x \in K$ existe $n \in \mathbb{N}$ tal que

$$n > x$$
.

Portanto \mathbb{Q} é arquimediano.

Lema 5.1. Se K é um corpo arquimediano então para todo $a, b \in K$ com a, b > 0 existe $n \in \mathbb{N}$ tal que

$$n \cdot a > b$$
.

Em outras palavras, dados a > 0 possivelmente muito pequeno, e b possivelmente muito grande, existe um inteiro n suficientemente grande que

$$\underbrace{a+\ldots+a}_{n \text{ vezes}} = na > b.$$

Demonstração. Seja $x = b \cdot a^{-1}$. Como K é arquimediano, existe $n \in \mathbb{N}$ tal que

$$n > x$$

$$\Rightarrow n > b \cdot a^{-1}$$

$$\Rightarrow na > b \cdot a^{-1} \cdot a$$

$$\Rightarrow na > b.$$

6. Os números racionais não são suficientes

Pelo teorema de Pitágoras, o comprimento x da diagonal de um quadrado com lados de comprimento 1 satisfaz a equação

 $x^2 = 1^2 + 1^2,$

ou seja,

$$x^2 = 2.$$

Proposição 6.1. Não existe nenhum número racional x tal que $x^2 = 2$.

Demonstração. Suponha por contradição que exista um número racional x tal que $x^2 = 2$.

Representemos x como um quociente $\frac{m}{n}$ completamente reduzido, isto é, tal que m,n não tenham nenhum divisor comum. Então

$$\left(\frac{m}{n}\right)^2 = x^2 = 2$$

$$\Rightarrow \frac{m^2}{n^2} = 2$$

$$\Rightarrow m^2 = 2n^2.$$

Como $2n^2$ é um número par, m^2 também é par, logo m deve ser par (se m fosse ímpar, então $m^2 = m \cdot m$ seria ímpar também).

Então existe $k \in \mathbb{Z}$ tal que

$$m=2k$$

$$\Rightarrow m^2=4k^2.$$
 Mas $m^2=2n^2$, então
$$4k^2=2n^2$$

$$\Rightarrow 2k^2=n^2$$

$$\Rightarrow n^2 \notin \text{par}$$

$$\Rightarrow n \notin \text{par}.$$

Portanto m e n são ambos números pares, então são divisíveis por 2, uma contradição com o fato de não terem nenhum divisor comun.

Isso mostra que o conjunto de números racionais não é suficiente nem para medir quantidades físicas simples, como a diagonal de um quadrado (ou a área de um círculo e etc.). Portanto precisamos ampliar significativamente esse conjunto, ou seja, considerar o conjunto dos números reais.

П