CAPÍTULO 5. SEQUÊNCIAS DE NÚMEROS REAIS

Sumário

1.	Sequências de números reais	1
Οu	itros exemplos de sequências	3
2.	Limite de uma sequência	3
3.	Propriedades aritméticas dos limites	6
4.	Pontos limite de uma sequência	S
5.	Sequências de Cauchy	10
6.	Limite inferior e superior	11
7.	Limites infinitos	14

1. SEQUÊNCIAS DE NÚMEROS REAIS

Intuitivamente, uma sequência de números reais é uma lista enumerável infinita com possíveis repetições

$$x_0, x_1, \ldots, x_n, \ldots$$

onde $x_n \in \mathbb{R}$ para todo $n \in \mathbb{N}$.

Formalmente, uma sequência de números reais é uma função

$$x: \mathbb{N} \to \mathbb{R}$$
.

Denotamos x(n) por x_n para todo $n \in \mathbb{N}$. Além disso, também escrevemos

$$x = (x_n)_{n \in \mathbb{N}}.$$

Por exemplo, a sequência

$$1, -1, 1, -1, \ldots$$

é formalmente dada pela função

$$x: \mathbb{N} \to \mathbb{R}$$
,

$$x(n) = \begin{cases} 1 & \text{se } n \text{ \'e par} \\ -1 & \text{se } n \text{ \'e impar.} \end{cases}$$

Acontece que essa sequência também pode ser descrita por uma fórmula fechada,

$$x(n) = (-1)^n$$
 para todo $n \in \mathbb{N}$.

Observação 1.1. Uma sequência $x: \mathbb{N} \to \mathbb{R}$ é representada pela lista enumerável infinita

$$x_0, x_1, x_2, \ldots, x_n, \ldots$$

e não pela sua imagem, que é o conjunto

$$x(\mathbb{N}) = \{x_n : n \in \mathbb{N}\}.$$

No exemplo anterior, em que

$$x(n) = (-1)^n$$
 para todo $n \in \mathbb{N}$,

a lista correspondente é

$$1, -1, 1, -1, \ldots$$

onde 1 e -1 são alternadamente repetidos um número infinito de vezes, enquanto a imagem de x é simplesmente o conjunto $\{1, -1\}$.

Definição 1.1. Uma sequência $(x_n)_{n\geq 0}$ é limitada superiormente se existe $b\in\mathbb{R}$ tal que

$$x_n \leq b$$
 para todo $n \geq 0$.

Similarmente, $(x_n)_{n\geq 0}$ é limitada inferiormente se existe $a\in \mathbb{R}$ tal que

$$a \le x_n$$
 para todo $n \ge 0$.

A sequência $(x_n)_{n\geq 0}$ é limitada se ela é limitada superiormente e inferiormente, i.e., se existem $a,b\in\mathbb{R}$ tais que

$$a \leq x_n \leq b$$
 para todo $n \in \mathbb{N}$.

Observação 1.2. Uma sequência $(x_n)_{n\geq 0}$ é limitada se e somente se existe $M\in\mathbb{R}$ tal que

$$|x_n| \leq M$$
 para todo $n \in \mathbb{N}$.

De fato, se $|x_n| \leq M$ então

$$-M \le x_n \le M$$

logo $(x_n)_{n\geq 0}$ é limitada.

Por outro lado, se $a \leq x_n \leq b$, como

$$b \le |b| \in -a \le |a|,$$

então $-|a| \le a$, temos que

$$-|a| \le x_n \le |b|$$

para todo $n \in \mathbb{N}$.

Seja $M = \max\{|a|, |b|\}$. Então $|b| \le M$ e $|a| \le M$, então

$$-M \le x_n \le M$$
, logo $-M \le x_n \le M$,

ou $|x_n| \leq M$.

Definição 1.2. Uma sequência $(x_n)_{n\geq 0}$ é crescente se $x_n < x_{n+1}$ para todo $n\geq 0$, isto é, se

$$x_0 < x_1 < \cdots < x_n < x_{n+1} < \cdots$$

Similarmente, (x_n) é decrescente se $x_n > x_{n+1}$ para todo $n \ge 0$, isto é, se

$$x_0 > x_1 > \dots > x_n > x_{n+1} > \dots$$

Além disso, $(x_n)_n$ é não decrescente se $x_n \le x_{n+1}$ para todo $n \ge 0$ e não crescente se $x_n \ge x_{n+1}$ para todo $n \ge 0$. Uma sequência com uma dessas propriedades é dita monótona.

Exemplo 1.1. A sequência $x_n = n$ para todo $n \in \mathbb{N}$ é claramente crescente, enquanto $x_n = -n$, $n \in \mathbb{N}$ é decrescente. A sequência $x_n = (-1)^n$ não é monótona.

Definição 1.3. Seja $(x_n)_{n\geq 0}$ uma sequência de números reais. Dada uma sequência crescente de números naturais

$$n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$$

a sequência

$$y_k = x_{n_k}, \quad k \ge 1$$

é chamada uma subsequência de $(x_n)_n$.

Exemplo 1.2. Dada uma sequência $(x_n)_{n\geq 0}$,

$$x_0, x_2, x_4, \cdots, x_{2n}, \cdots$$

é a subsequência dos termos de índices pares. Similarmente,

$$x_1, x_3, x_5, \cdots x_{2n+1}, \cdots$$

é a subsequência dos termos ímpares. Outros exemplos de subsequências são:

$$x_1, x_2, x_4, x_8, \cdots, x_{2^n}, \cdots$$

ou

$$x_1, x_4, x_7, x_{10}, \cdots x_{n+3}, \cdots$$

ou, mais geralmente, dado $k \in \mathbb{N}$,

$$(x_{k+n})_{n\in\mathbb{N}}$$

é a subsequências dps termos começando com o índice k.

Outros exemplos de sequências.

• $x_n = \frac{1}{n}$ para $n \ge 1$, ou seja,

$$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{n},\cdots$$

Limitada por 0 e 1, decrescente.

• $x_n = a^n$ para $n \ge 0$, ou seja, $a \in (0,1)$

$$1, a, a^2, \cdots, a^n, \cdots$$

Limitada, decrescente.

■ Dado $a \in (0,1)$, para todo $n \ge 0$

$$x_n = 1 + a + \dots + a^n = \frac{1 - a^{n+1}}{1 - a}$$

Note que se $a \in (0,1)$, então $a^{n+1} \in (0,1)$. Logo

$$0 \le x_n \le \frac{1}{1-a},$$

então a sequência é limitada e estritamente crescente.

■ Dado R > 1, $x_n = R^n$ para $n \in \mathbb{N}$, ou seja,

$$1, R, R^2, \cdots, R^n, \cdots$$

Não limitada, crescente.

• $a_n = 1 + \frac{1}{1!} + \cdots + \frac{1}{n!}$ limitada por 3, crescente.

2. Limite de uma sequência

Sejam $(x_n)_n$ uma sequência de números reais e $a \in \mathbb{R}$.

Intuitivamente, $(x_n)_n$ converge para a se os termos x_n da sequência se aproximam arbitrariamente perto de a se n é suficientemente grande.

Em outras palavras, dada qualquer ordem de proximidade ε , por exemplo $\varepsilon = 0,001$ ou $\varepsilon = 0,000001$, eventualmente (a partir de um certo limiar n_0), todos os termos x_n se tornam mais próximos do que ε de a. Formalmente,

Definição: Dizemos que

$$\lim_{n \to \infty} x_n = a$$

quando para todo $\varepsilon > 0$ existe $n_{\varepsilon} \in \mathbb{N}$ tal que

$$n \geq n_{\varepsilon}$$
 implies $|x_n - a| \leq \varepsilon$

Exemplo 2.1. $\lim_{n\to\infty}\frac{1}{n}=0$.

De fato, dado $\varepsilon > 0$, $\frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon}$. Pelo fato de ser arquimediano, existe $n_{\varepsilon} \in \mathbb{N}$ tal que $n_{\varepsilon} > \frac{1}{\varepsilon}$. Então para todo $n \geq n_{\varepsilon}$ tem-se $n > \frac{1}{\varepsilon}$, e daí $\frac{1}{n} < \varepsilon$. Logo,

$$\left|\frac{1}{n}-0\right|=\frac{1}{n}<\varepsilon$$
 para todo $n\geq n_{\varepsilon}$,

mostrando que $\lim_{n\to\infty}\frac{1}{n}=0$.

Outras notações:

Neste caso dize-mos também que a sequência $(x_n)_n$ é convergente e seu limite é a.

Exemplo 2.2. $\lim_{n\to\infty} \frac{1}{2^n} = 0.$

De fato, por indução temos que

 $2^n \ge n$ para todo $n \in \mathbb{N}$.

Logo, dado $\varepsilon > 0$, como existe $n_{\varepsilon} \in \mathbb{N}$ com $n_{\varepsilon} > \frac{1}{\varepsilon}$, segue que para todo $n \geq n_{\varepsilon}$,

$$\frac{1}{2^n} \le \frac{1}{n} < \frac{1}{n_\varepsilon} < \varepsilon,$$

e daí

$$\left| \frac{1}{2^n} - 0 \right| = \frac{1}{2^n} < \varepsilon.$$

Exemplo 2.3. A sequência $x_n = (-1)^n \frac{1}{n}$, $n \ge 1$ também converge para 0. De fato,

$$\left|(-1)^n\frac{1}{n}-0\right|=\left|(-1)^n\frac{1}{n}\right|=\frac{1}{n}<\varepsilon$$

se $n > \frac{1}{\varepsilon}$.

Teorema 2.4. Se existir, o limite de uma sequência é único, isto é, se

$$\lim_{n\to\infty} x_n = a \ e \ \lim_{n\to\infty} x_n = b \ ent \tilde{a}o \ a = b.$$

Demonstração. Suponha por contradição que $a \neq b$ e seja $\varepsilon := \frac{|a-b|}{2} > 0$.

Como $\lim_{n\to\infty} x_n = a$, para este ε existe n_1 tal que

Se $n \geq n_1$, então $|x_n - a| < \varepsilon$.

Similarmente, como $\lim_{n\to\infty} x_n = b$, existe n_2 tal que

Se $n \ge n_2$ então $|x_n - b| < \varepsilon$.

Seja $N = \max\{n_1, n_2\}.$

Logo $N \ge n_1$ e $N \ge n_2$, e daí, $|x_N - a| < \varepsilon$ e $|x_N - b| < \varepsilon$.

Portanto, pela desigualdade triangular,

$$|a-b| = |a-x_N + x_N - b| \le |a-x_N| + |x_N - b| < \varepsilon + \varepsilon = 2\varepsilon = |a-b|,$$

que implica o fato absurdo de que |a - b| < |a - b|.

Concluímos que a = b.

Teorema 2.5. Se $\lim_{n\to\infty} x_n = a$ então toda subsequência de $(x_n)_n$ converge para a.

Demonstração. Seja $(x_{n_k})_k$ uma subsequência de $(x_n)_n$, então os números naturais índices

$$n_1 < n_2 < n_3 < \cdots < n_k < \cdots$$

formam uma sequência crescente de números naturais.

Por indução (fixa o argumento), tem-se

$$n_k \ge k$$
 para todo $k \in \mathbb{N}$.

Então, dado $\varepsilon > 0$, como $\lim_{n \to \infty} x_n = a$, existe $n(\varepsilon) \in \mathbb{N}$ tal que

se
$$k \ge n(\varepsilon)$$
 então $|x_k - a| < \varepsilon$.

Logo, para todo $k \geq n(\varepsilon)$, como $n_k \geq k \geq n(\varepsilon)$, tem-se

$$|x_{n_k}-a|<\varepsilon,$$

provando que $\lim_{k\to\infty} x_{n_k} = a$.

Exemplo 2.6. A sequência $x_n = (-1)^n$, $n \in \mathbb{N}$ não converge.

De fato, a subsequência $x_{2n}=(-1)^{2n}=1, n\in\mathbb{N}$ é constante, portanto converge para 1.

Similarmente, a subsequência $x_{2n+1} = (-1)^{2n+1} = -1$ é constante -1, portanto converge para -1.

Se a sequência $(x_n)_n$ convergisse, qualquer subsequência dela convergiria para o mesmo limite, o que não é o caso, já que $1 \neq -1$.

Portanto $(x_n)_n$ não converge. \square

Teorema 2.7. Toda sequência convergente é limitada. A recíproca não é verdadeira (veja o exemplo acima).

Demonstração. Sejam $(x_n)_n$ uma sequência, $a \in \mathbb{R}$ e suponha que $\lim_{n\to\infty} x_n = a$.

Para $\varepsilon = 1$ existe um $n_1 \in \mathbb{N}$ tal que

$$n > n_1 \Rightarrow |x_n - a| < 1$$

$$\Rightarrow x_n \in (a-1, a+1).$$

Considere o conjunto finito de números reais consistindo nos primeiros n_1 termos da sequência (x_n) e nos pontos extremos a-1 e a+1, isto é, seja

$$F = \{x_0, x_1, \dots, x_{n_1-1}, a-1, a+1\}.$$

Então F possui um máximo M e um mínimo m (sendo finito).

Consequentemente, para todo $n \in \mathbb{N}$,

$$m \leq x_n \leq M$$
,

mostrando que $(x_n)_n$ é limitada.

Teorema 2.8. Toda sequência monótona e limitada é convergente.

Mais precisamente, se $(x_n)_n$ é não decrescente e limitada superiormente, então $(x_n)_n$ é convergente e

$$\lim x_n = \sup\{x_n : n \in \mathbb{N}\}.$$

Similarmente, se $(x_n)_n$ é não crescente $(x_n \ge x_{n+1}, \forall n \in \mathbb{N})$ e limitada inferiormente, então $(x_n)_n$ é convergente e

$$\lim_{n \to \infty} x_n = \inf\{x_n : n \in \mathbb{N}\}.$$

Demonstração. Consideremos o primeiro caso, o segundo sendo similar (exercício).

 $(x_n)_n$ satisfaz $x_n \leq x_{n+1}, \forall n \in \mathbb{N}$.

Seja $b = \sup\{x_n : n \in \mathbb{N}\}.$

Vamos provar que $\lim_{n\to\infty} x_n = b$.

Seja $\varepsilon > 0$. Então $b - \varepsilon < b$, e como b é a menor cota superior de $\{x_n : n \in \mathbb{N}\}$, existe $n_{(\varepsilon)} \in \mathbb{N} \text{ tal que } b - \varepsilon < x_{n_{(\varepsilon)}}.$

Se $n \ge n(\varepsilon)$, como $(x_n)_n$ é não decrescente, tem-se $x_n \ge x_{n(\varepsilon)}$. Portanto,

$$b - \varepsilon < x_{n(\varepsilon)} \le x_n$$
 para todo $n \ge n(\varepsilon)$.

Por outro lado, b é uma cota superior de $\{x_n : n \in \mathbb{N}\}$, logo

$$x_n \le b < b + \varepsilon$$

para todo $n \in \mathbb{N}$.

Concluímos que

$$b - \varepsilon < x_n < b + \varepsilon$$

para todo $n \geq n(\varepsilon)$

$$\Rightarrow |x_n - b| < \varepsilon,$$

provando que $\lim_{n\to\infty} x_n = b$.

Corolário 2.9. Seja $(x_n)_n$ uma sequência monótona. Se $(x_n)_n$ possui uma subsequência convergente, então $(x_n)_n$ é convergente.

Demonstração. Vamos tratar o caso de uma sequência não crescente, $x_n \leq x_{n+1} \ \forall n$. Seja $(x_{n_k})_k$ uma subsequência convergente, então limitada, logo existe $M \in \mathbb{R}$ tal que

$$x_{n_k} \leq M$$
 para todo k .

Mas $n_k \geq k \ \forall k \in \mathbb{N}$, então $x_{n_k} \geq x_k \ \forall k \in \mathbb{N}$ Logo $x_k \leq x_{n_k} \leq M \ \forall k \in \mathbb{N}$, ou seja, a sequência $(x_k)_k$ é limitada superiormente. Sendo monótona por cima, pelo teorema anterior é convergente.

3. Propriedades aritméticas dos limites

Lembre-se que uma sequência de números reais (x_n) converge para a se para todo $\varepsilon > 0$ existe $n_{\varepsilon} \in \mathbb{N}$ tal que se $n \geq n_{\varepsilon}$ então $|x_n - a| < \varepsilon$.

Portanto,

$$\lim_{n \to \infty} x_n = a \quad \text{sse} \quad \lim_{n \to \infty} |x_n - a| = 0.$$

Lema 3.1. Suponha que $\lim_{n\to\infty} x_n = a$, onde $a\neq 0$. Então eventualmente, todos os termos da sequência são diferentes de 0, ou mais ainda, existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$,

$$|x_n| \ge \frac{|a|}{2} > 0$$

Demonstração. Seja $\varepsilon = \frac{|a|}{2}$. Como $a \neq 0$, |a| > 0, então $\varepsilon > 0$. Como $x_n \to a$ quando $n \to \infty$, para este ε existe $n_0 \in \mathbb{N}$ tal que se $n \ge n_0$, então

$$|x_n - a| < \frac{|a|}{2}.$$

Logo, pela desigualdade triangular,

$$|a| = |a - x_n + x_n| \le |a - x_n| + |x_n| < \frac{|a|}{2} + |x_n|,$$

e daí,

$$\frac{|a|}{2} < |x_n|.$$

Em particular, com $\frac{|a|}{2} > 0$, $|x_n| > 0$, logo $x_n \neq 0$.

Teorema 3.2. Se $\lim_{n\to\infty} x_n = 0$ e $(y_n)_n$ é uma sequência limitada, então

$$\lim_{n \to \infty} x_n \cdot y_n = 0.$$

Demonstração. Como $(y_n)_n$ é limitada, existe $M \in \mathbb{R}$ tal que $|y_n| \leq M$ para todo $n \in \mathbb{N}$. Seja $\varepsilon > 0$. Como $\lim_{n \to \infty} x_n = 0$, existe $n_{\varepsilon} \in \mathbb{N}$ tal que se $n \geq n_{\varepsilon}$ então $|x_n| < \frac{\varepsilon}{M}$. Logo, para todo $n \geq n_{\varepsilon}$,

$$|x_n \cdot y_n| = |x_n| \cdot |y_n| \le \frac{\varepsilon}{M} \cdot M = \varepsilon,$$

então $|x_n \cdot y_n| \le \varepsilon$, mostrando que $\lim_{n \to \infty} x_n \cdot y_n = 0$. \square

Exemplo 3.3. Seja $x \in \mathbb{R}$ um número qualquer, e considere a sequência

$$x_n = \frac{\sin(nx)}{n}, \quad n \ge 1.$$

Então $\lim_{n\to\infty} x_n = 0.$

De fato, $a_n = \frac{1}{n} \cdot \sin(nx)$. Claramente $\lim_{n \to \infty} \frac{1}{n} = 0$, enquanto $|\sin(nx)| \le 1$ para todo $n \in \mathbb{N}$, então a sequência $(\sin(nx))_{n \in \mathbb{N}}$ é limitada. Portanto, pelo teorema anterior,

$$\lim_{n \to \infty} \frac{1}{n} \sin(nx) = 0.$$

Teorema 3.4. Sejam (x_n) , (y_n) duas sequências de números reais e sejam $a, b \in \mathbb{R}$. Suponha que

$$\lim_{n \to \infty} x_n = a \quad e \quad \lim_{n \to \infty} y_n = b.$$

 $Ent\tilde{a}o$

- (1) $\lim_{n \to \infty} (x_n + y_n) = a + b$.
- $(2) \lim_{n \to \infty} (x_n \cdot y_n) = a \cdot b.$
- (3) se $b \neq 0$ então $\lim_{n \to \infty} \frac{1}{y_n} = \frac{1}{b}$.
- (4) se $b \neq 0$ então $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$.

Demonstração. (1) Seja $\varepsilon > 0$.

Como $\lim_{n\to\infty} x_n = a$, existe $n_1(\varepsilon) \in \mathbb{N}$ tal que se $n \geq n_1(\varepsilon)$ então $|x_n - a| < \frac{\varepsilon}{2}$.

Como $\lim_{n\to\infty}^{n\to\infty} y_n = b$, existe $n_2(\varepsilon) \in \mathbb{N}$ tal que se $n \ge n_2(\varepsilon)$ então $|y_n - b| < \frac{\varepsilon}{2}$.

Seja $n(\varepsilon) = \max\{n_1(\varepsilon), n_2(\varepsilon)\}$. Então para todo $n \ge n(\varepsilon)$,

$$|(x_n + y_n) - (a + b)| = |(x_n - a) + (y_n - b)| \le |x_n - a| + |y_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

provando a afirmação.

(2) Temos que

$$x_n \cdot y_n - a \cdot b = x_n y_n - a y_n + a y_n - a b = (x_n - a) \cdot y_n + a (y_n - b).$$

Como $d \lim_{n\to\infty} x_n = a$, segue que $\lim_{n\to\infty} (x_n - a) = 0$. Mas $(y_n)_n$ converge, então é limitada. Logo $\lim_{n\to\infty} (x_n - a) \cdot y_n = 0$.

Além disso, $\lim_{n\to\infty} a(y_n - b) = a \cdot 0 = 0$. Portanto

$$\lim_{n \to \infty} (x_n \cdot y_n - ab) = 0 + 0 = 0,$$

e daí, $\lim_{n\to\infty} x_n \cdot y_n = a \cdot b$.

(3) Temos que

$$\frac{1}{y_n} - \frac{1}{b} = \frac{b - y_n}{y_n \cdot b}.$$

Como $\lim_{n\to\infty}y_n=b$ e $b\neq 0$, por um lemma anterior, existe n_0 tal que se $n\geq n_0$ então

$$|y_n| > \frac{|b|}{2}.$$

Portanto o denominador de $b \cdot y_n$ satisfaz

$$|y_n \cdot b| = |y_n| \cdot |b| > |b| \cdot |b| = \frac{b^2}{2}.$$

Como $\lim_{n\to\infty}y_n=b$, dado $\varepsilon>0$ existe n_ε tal que se $n\geq n_\varepsilon$ então

$$|y_n - b| < \varepsilon \cdot \frac{b^2}{2}.$$

Seja $N(\varepsilon) = \max\{n_0, n_{\varepsilon}\}$. Para todo $n \geq N(\varepsilon)$ temos

$$\left| \frac{1}{y_n} - \frac{1}{b} \right| = \frac{|b - y_n|}{|y_n \cdot b|} < \frac{\varepsilon \cdot \frac{b^2}{2}}{\frac{b^2}{2}} = \varepsilon,$$

 $\log_{\frac{1}{y_n}} \to \frac{1}{b}$ quando $n \to \infty$.

(4) Temos $\frac{x_n}{y_n} = x_n \cdot \frac{1}{y_n}$ e a conclusão segue usando (2) e (3).

Teorema 3.5. Sejam $(x_n)_n$, $(y_n)_n$, $(z_n)_n$ três sequências e suponha que

$$x_n \le y_n \le z_n$$
 para todo n .

Se $\lim_{n\to\infty} x_n = a = \lim_{n\to\infty} z_n$, então $(y_n)_n$ é convergente e

$$\lim_{n\to\infty}y_n=a.$$

Demonstração. Seja $\varepsilon > 0$.

Como $\lim_{n \to \infty} z_n = a$, existe $n_1(\varepsilon) \in \mathbb{N}$ tal que se $n \ge n_1(\varepsilon)$ então $z_n < a + \varepsilon$.

Como $\lim_{n \to \infty} x_n = a$, existe $n_2(\varepsilon) \in \mathbb{N}$ tal que se $n \ge n_2(\varepsilon)$ então $a - \varepsilon < x_n$.

Seja $n(\varepsilon) = \max\{n_1(\varepsilon), n_2(\varepsilon)\}.$

Logo, para todo $n \ge n(\varepsilon)$ tem-se

$$a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon$$
,

portanto

$$a - \varepsilon < y_n < a + \varepsilon$$
,

e daí $|y_n - a| < \varepsilon$, provando o teorema.

página 8

4. Pontos limite de uma sequência

Sejam $(x_n)_n$ uma sequência e $a \in \mathbb{R}$.

Definição 4.1. O número a se chama um valor de aderência (ou ponto limite) da sequência $(x_n)_n$ quando existe uma subsequência $(x_{n_k})_k$ tal que

$$\lim_{k \to \infty} x_{n_k} = a.$$

Evidentemente, se $(x_n)_n$ converge para a, então a é o único valor de aderência de $(x_n)_n$.

Exemplo 4.1. A sequência

$$1, -1, 1, -1, \dots$$

tem dois valores de aderência, 1 e -1.

Lema 4.2. O número a é um valor de aderência de $(x_n)_n$ sse para todo $\varepsilon > 0$ existe um conjunto infinito de índices n para os quais

$$|x_n - a| < \varepsilon.$$

Demonstração. Se a é um valor de aderência de $(x_n)_n$, então existe uma subsequência $(x_{n_k})_k$ tal que

$$\lim_{k \to \infty} x_{n_k} = a.$$

Dado $\varepsilon > 0$, existe $k_{\varepsilon} \in \mathbb{N}$ tal que se $k \geq k_{\varepsilon}$ então $|x_{n_k} - a| < \varepsilon$.

Logo, os índices n_k com $k \ge k_{\varepsilon}$ satisfazem a propriedade desejada.

Vamos provar a recíproca. Suponha que para todo $\varepsilon > 0$, a desigualdade

$$|x_n - a| < \varepsilon$$

vale para um número infinito de índices.

Para $\varepsilon = 1$ existe um número infinito de índices n tal que $|x_n - a| < 1$, em particular existe $n_1 \in \mathbb{N}$ tal que $|x_{n_1} - a| < 1$.

Para $\varepsilon = \frac{1}{2}$ existe um número infinito de índices n tal que $|x_n - a| < 1/2$, em particular existe $n_2 > n_1$ tal que $|x_{n_2} - a| < \frac{1}{2}$.

Suponha construídos os índices $n_1 < n_2 < \ldots < n_k$ com $|x_{n_i} - a| < 1/i$ para $i = 1, \ldots, k$. Para $\varepsilon = \frac{1}{k+1}$, a desigualdade $|x_n - a| < \frac{1}{k+1}$ vale para um número infinito de índices, e em particular existe $n_{k+1} > n_k$ tal que $|x_{n_{k+1}} - a| < \frac{1}{k+1}$.

Por indução, para todo $k \in \mathbb{N}$ existe $n_k \in \mathbb{N}$ tal que $n_1 < n_2 < \ldots < n_k < n_{k+1} < \ldots$ e $|x_{n_k} - a| < \frac{1}{k}.$

Como $\lim_{k\to\infty}\frac{1}{k}=0$, concluímos que $\lim_{k\to\infty}|x_{n_k}-a|=0$, ou seja, $\lim_{k\to\infty}x_{n_k}=a$, completando a prova do lema.

Teorema 4.3. Toda sequência limitada possui um valor de aderência.

Demonstração. Vamos usar o teorema dos intervalos encaixados. Seja $(x_n)_n$ uma sequência limitada, então existem $m, M \in \mathbb{R}$ tais que $m \leq x_n \leq M$ para todo $n \geq 0$. Sejam $I_0 = [m, M]$ e $n_0 = 0$, então $x_{n_0} \in I_0$ e $|I_0| = M - m$.

Dividimos I_0 em dois subintervalos fechados do mesmo comprimento. Um deles (pelo menos) deve conter um número infinito de índices $n \in \mathbb{N}$ com $n > n_0$. Denotamos um desses subintervalos por I_1 . Então, seja $n_1 > n_0$ tal que $x_{n_1} \in I_1$, $I_1 \subset I_0$, I_1 é fechado, $|I_1| = \frac{M-m}{2}$ e $x_{n_1} \in I_1$.

Construídos intervalos fechados $I_k \subset I_{k-1} \subset \ldots \subset I_1 \subset I_0$ com $|I_k| = \frac{M-m}{2^k}$ e $n_k > n_{k-1} > \ldots > n_1 > n_0$, $x_{n_k} \in I_k$, dividimos I_k em dois subintervalos fechados, de comprimentos iguais, e denotamos por I_{k+1} um deles que contém um número infinito de pontos x_n com $n > n_k$.

Seja $n_{k+1} > n_k$ tal que $x_{n_{k+1}} \in I_{k+1}$. Então $I_{k+1} \subset I_k$, I_{k+1} é fechado, $|I_{k+1}| = \frac{|I_k|}{2} = \frac{M-m}{2^{k+1}}$ e $x_{n_{k+1}} \in I_{k+1}$.

Por indução temos uma sequência $\{I_k\}_{k\geq 0}$ de intervalos fechados encaixados com $|I_k| = \frac{(M-m)}{2^k} \to 0$ e uma subsequência $(x_{n_k})_k$ tal que $x_{n_k} \in I_k$ para todo $k \geq 0$.

Pelo teorema dos intervalos encaixados, existe (pelo menos) um ponto $a \in I_k$ para todo $k \ge 0$. Como $x_{n_k} \in I_k$, segue que $|x_{n_k} - a| \le |I_k| = \frac{(M-m)}{2^k}$. Logo $x_{n_k} \to a$ quando $k \to \infty$. \square

5. SEQUÊNCIAS DE CAUCHY

Seja $(x_n)_n$ uma sequência de números reais. Se

$$\lim_{n \to \infty} x_n = a,$$

então eventualmente, todos os termos da sequência estão perto de a, logo perto um do outro.

Intuitivamente, este é o conceito de sequência de Cauchy: uma sequência tal que eventualmente seus termos estão arbitrariamente próximos entre eles.

Toda sequência convergente é de Cauchy. Veremos que no espaço $\mathbb{R},$ a recíproca também é verdadeira.

Definição 5.1. Uma sequência $(x_n)_n$ de números reais é uma sequência de Cauchy se para todo $\varepsilon > 0$ existe $n_{\varepsilon} \in \mathbb{N}$ tal que se $n, m \geq n_{\varepsilon}$ então $|x_n - x_m| < \varepsilon$.

Teorema 5.1. Toda sequência convergente é uma sequência de Cauchy.

Demonstração. Seja $\varepsilon > 0$. Portanto existe $n_{\varepsilon} \in \mathbb{N}$ tal que se $n \geq n_{\varepsilon}$ então $|x_n - a| < \frac{\varepsilon}{2}$. Sejam $n, m \geq n_{\varepsilon}$. Logo

$$|x_n - x_m| = |x_n - a + a - x_m| \le |x_n - a| + |a - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

mostrando que $(x_n)_n$ é uma sequência de Cauchy. \square

Lema 5.2. Toda sequência de Cauchy é limitada.

Demonstração. Seja $\varepsilon = 1$. Portanto existe $n_1 \in \mathbb{N}$ tal que se $n, m \ge n_1$ então $|x_n - x_m| < 1$. Em particular, para todo $n \ge n_1$, $|x_n - x_{n_1}| < 1$, o que implica $x_{n_1} - 1 < x_n < x_{n_1} + 1$. Sejam $M = \max\{x_0, \dots, x_{n_1-1}, x_{n_1} + 1\}$ e $m = \min\{x_0, \dots, x_{n_1-1}, x_{n_1} - 1\}$. Então claramente para todo $n \ge 0$, $m \le x_n \le M$, provando que $(x_n)_n$ é limitada.

Teorema 5.3 (Critério de Cauchy). Toda sequência de Cauchy é convergente.

Demonstração. Seja $(x_n)_n$ uma sequência de Cauchy. Então ela é limitada e por um teorema anterior, possui uma subsequência convergente:

$$\lim_{k \to \infty} x_{n_k} = a.$$

Vamos provar que na verdade $\lim_{k\to\infty} x_k = a$.

Seja $\varepsilon>0$. Como $\lim_{k\to\infty}x_{n_k}=a$, existe $k_\varepsilon\in\mathbb{N}$ tal que se $k\geq k_\varepsilon$ então

$$|x_{n_k} - a| < \frac{\varepsilon}{2}.$$

Como $(x_n)_n$ é Cauchy, existe $n_{\varepsilon} \in \mathbb{N}$ tal que se $n, m \geq n_{\varepsilon}$ então

$$|x_n - x_m| < \frac{\varepsilon}{2}.$$

Seja $N_{\varepsilon} = \max\{k_{\varepsilon}, n_{\varepsilon}\}$. Se $k \geq N_{\varepsilon}$ então, como $n_k > k$, temos que

$$|x_k - a| = |x_k - x_{n_k} + x_{n_k} - a| \le |x_k - x_{n_k}| + |x_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

provando que $(x_k)_k$ é convergente.

6. Limite inferior e superior

Seja $(x_n)_n$ uma sequência limitada de números reais. Então existem $m, M \in \mathbb{R}$ tais que

$$m \le x_n \le M \quad \forall n.$$

Para todo $n \in \mathbb{N}$, seja

$$a_n = \inf\{x_n, x_{n+1}, \ldots\}$$

= $\inf\{x_k : k \ge n\}.$

Observe que para todo $n \in \mathbb{N}$,

$$m \le a_n \le M,$$

$$a_{n+1} \ge a_n.$$

A segunda afirmação vale porque

$$\{x_n, x_{n+1}, \ldots\} \supset \{x_{n+1}, \ldots\}$$

e se $A \subset B$ são conjuntos limitados, então

$$\inf A \ge \inf B$$

$$\sup A \le \sup B.$$

Segue que a sequência $(a_n)_n$ é não decrescente e limitada, portanto é convergente, e

$$\lim_{n \to \infty} a_n = \sup_{n \ge 1} a_n$$
$$= \sup_{n \ge 1} \inf_{k \ge n} x_k$$

se chama o limite inferior da sequência inicial.

Similarmente, para todo $n \in \mathbb{N}$, seja

$$b_n = \sup\{x_n, x_{n+1}, x_{n+2}, \ldots\}$$

= $\sup\{x_k : k \ge n\}.$

Então para todo $n \in \mathbb{N}$,

$$m \le b_n \le M,$$

$$b_{n+1} \le b_n.$$

Portanto $(b_n)_n$ converge e

$$\lim_{n \to \infty} b_n = \inf_{n \ge 1} b_n$$
$$= \inf_{n \ge 1} \sup_{k \ge n} x_k$$

se chama o limite superior da sequência.

Portanto, dada uma sequência limitada $(x_n)_n$, definimos

■ O limite inferior

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{k \ge n} x_k
= \sup_{n \ge 1} \inf_{k \ge n} x_k.$$

■ O limite superior

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{k \ge n} x_k$$
$$= \inf_{n \ge 1} \sup_{k > n} x_k.$$

Observação 6.1. Claramente temos que para todo $n \in \mathbb{N}$,

$$a_n = \inf\{x_k : k \ge n\} \le \sup\{x_k : k \ge n\} = b_n,$$

portanto

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n.$$

Teorema 6.1. Seja $(x_n)_n$ uma sequência limitada. Então, o $\liminf_{n\to\infty} x_n$ é o menor valor de aderência da sequência $(x_n)_n$ e, similarmente, o $\limsup_{n\to\infty} x_n$ é o maior valor de aderência da sequência $(x_n)_n$.

Demonstração. Vamos provar a primeira afirmação (a segunda é exercício).

1) O primeiro passo é provar que $a = \liminf_{n \to \infty} x_n$ é um valor de aderência.

Seja $\varepsilon > 0$. Basta mostrar que há uma infinidade de termos x_n em $(a - \varepsilon, a + \varepsilon)$. Lembre-se que

$$a = \lim_{n \to \infty} a_n$$

onde

$$a_n = \inf\{x_k : k \ge n\}.$$

Então existe $n_{\varepsilon} \in \mathbb{N}$ tal que se $n \geq n_{\varepsilon}$, então $a_n \in (a - \varepsilon, a + \varepsilon)$.

Logo, para todo $k \ge n$, $x_k \ge a_n > a - \varepsilon$.

Por outro lado, como $a_n < a + \varepsilon$ e a_n é a maior cota inferior de $\{x_k : k \ge n\}$, existe $k_n \ge n$ tal que $x_{k_n} < a + \varepsilon$.

Segue que $x_{k_n} \in (a - \varepsilon, a + \varepsilon)$.

Concluímos que para todo $n \ge n_{\varepsilon}$, existe $k_n \ge n$ tal que $x_{k_n} \in (a - \varepsilon, a + \varepsilon)$, então existe uma infinidade de termos da sequência $(x_n)_n$ que pertencem ao intervalo $(a - \varepsilon, a + \varepsilon)$.

Logo, $a = \liminf_{n \to \infty} x_n$ é um valor de aderência da sequência.

2) Vamos provar que $a = \liminf_{n \to \infty} x_n$ é o menor valor de aderência de $(x_n)_n$.

Seja x um valor de aderência qualquer. Então existe uma subsequência $(x_{n_k})_k$ tal que

$$\lim_{k \to \infty} x_{n_k} = x.$$

Lembrando que

$$a = \lim_{n \to \infty} a_n,$$

onde

$$a_n = \inf\{x_\ell : \ell \ge n\},\$$

temos que

$$a_{n_k} = \inf\{x_\ell : \ell \ge n_k\},\,$$

e daí

$$a_{n_k} \leq x_{n_k}$$
.

Portanto, como

$$\lim_{k \to \infty} a_{n_k} = a,$$

concluímos que $a \leq x$.

Logo, a é o menor valor de aderência.

Corolário 6.2. Uma sequência limitada $(x_n)_n$ é convergente se e somente se

$$\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n.$$

Neste caso, $\lim_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$.

Observação 6.2. Lembre-se que

$$\lim_{n \to \infty} x_n = a \quad \text{quando}$$

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \in \mathbb{N}$$

tal que

se
$$n \ge n_{\varepsilon}$$
 então $|x_n - a| < \varepsilon$.

Vamos descrever a negação dessa afirmação. O limite de $(x_n)_n$ não é a significa:

$$\exists \varepsilon_0 > 0 \quad e \quad \forall n \in \mathbb{N} \quad \exists k_n \ge n$$

tal que

$$|x_{k_n} - a| \ge \varepsilon_0.$$

Prova do corolário. "⇒" Suponha que

$$\lim_{n \to \infty} x_n = a.$$

Vamos provar que

$$\lim_{n \to \infty} \inf x_n = a = \lim_{n \to \infty} \sup x_n$$

Toda subsequência de $(x_n)_n$ converge para a, então a é o único valor de aderência.

Logo, $\liminf x_n$, que é o menor valor de aderência de $(x_n)_n$, tem que ser a.

Similarmente, $\limsup_{n\to\infty} x_n$, que é o maior valor de aderência de $(x_n)_n$, tem que ser a também.

"⇐" Suponha que

$$\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = a.$$

Vamos provar que

$$\lim_{n \to \infty} x_n = a.$$

Pela hipótese, a é o único valor de aderência de $(x_n)_n$.

Se a não é o limite de $(x_n)_n$, pela observação anterior, existem $\varepsilon_0 > 0$ e uma subsequência $(x_{k_n})_n$ tal que para todo n,

$$|x_{k_n}-a|\geq \varepsilon_0.$$

Mas (x_{k_n}) é limitada, portanto existe uma (sub)subsequência $(x_{k_{n_\ell}})_\ell$ convergente.

Como a é o único valor de aderência de $(x_n)_n$, tem-se

$$\lim_{\ell \to \infty} x_{k_{n_\ell}} = a,$$

contradição com o fato de que

$$|x_{k_{n_{\ell}}} - a| \ge \varepsilon_0,$$

para todo ℓ .

Então
$$a = \lim_{n \to \infty} x_n$$
.

7. Limites infinitos

Há uma diferença entre os comportamentos das sequências divergentes

$$1, -1, 1, -1, \dots$$

por um lado, e

$$1, 2, 3, \ldots, n, \ldots$$

ou

$$-1, -2, -3, \ldots, -n, \ldots$$

ou

$$1, 2, 2^2, \ldots, 2^n, \ldots$$

por outro lado.

Definição 7.1. Uma sequência $(x_n)_n$ tende para ∞ , e escrevemos

$$\lim_{n \to \infty} x_n = \infty$$

se para todo A > 0 existe $n_A \in \mathbb{N}$ tal que se $n \ge n_A$ então

$$x_n > A$$
.

Similarmente,

$$\lim_{n \to \infty} x_n = -\infty$$

se para todo A > 0 existe $n_A \in \mathbb{N}$ tal que se $n \ge n_A$ então

$$x_n < -A$$
.

Exemplo 7.1.

$$\lim_{n\to\infty} n = \infty$$

$$\lim_{n \to \infty} (-n) = -\infty$$

Exemplo 7.2. Se a > 1 então

$$\lim_{n\to\infty} a^n = \infty.$$

De fato, por um exercício anterior, para todo A>0 existe $N\in\mathbb{N}$ tal que

$$a^N > A$$
.

Logo, se $n \ge N$, $a^n \ge a^N > A$.

Teorema 7.3. (Propriedades algébricas com limites infinitos)

Se $\lim_{n\to\infty} x_n = \infty$ e $(y_n)_n$ é limitada inferiormente, então

$$\lim_{n\to\infty} (x_n + y_n) = \infty.$$

Demonstração. Existe $m \in \mathbb{R}$ tal que

$$y_n \ge m \quad \forall n.$$

Seja A>0. Como $\lim_{n\to\infty}x_n=\infty$, existe n_A tal que se $n\geq n_A$, então

$$x_n > A - m$$

Logo

$$x_n + y_n > (A - m) + m = A,$$

provando a afirmação.