CAPÍTULO 7. ELEMENTOS DE TOPOLOGIA NA RETA REAL

Sumário

1.	Conjuntos abertos	1
2.	Conjuntos fechados	5
3.	Pontos de acumulação	7
4.	Conjuntos compactos	8

Topologia é uma disciplina matemática que estuda conceitos de proximidade, estabilidade, convergência, continuidade e etc.

1. Conjuntos abertos

Intuitivamente, uma propriedade que se refere aos números reais é aberta se ela é estável (ou seja, se ela permanece válida) sob pequenas perturbações.

Por exemplo, a propriedade

é aberta, já que uma pequena perturbação de x, ou seja, $x + \varepsilon$ e $x - \varepsilon$ ainda serão maiores do que 7 (se $\varepsilon > 0$ for suficientemente pequeno).

Por outro lado, a propriedade

não é aberta, já que $7 \ge 7$ mas para todo $\varepsilon > 0, 7 - \varepsilon < 7$.

Além disso, intuitivamente, um conjunto $X\subset\mathbb{R}$ é aberto se ele é definido por uma propriedade aberta.

Formalmente definimos o conceito de conjunto aberto como segue.

Definição 1.1. Um conjunto $X \subset \mathbb{R}$ é aberto se para todo ponto $x \in X$ existe um intervalo aberto (a,b) tal que

$$x \in (a, b)$$
 e $(a, b) \subset X$.

É fácil verificar que X é aberto sse para todo $x \in X$ existe $\varepsilon > 0$ tal que

$$(x-\varepsilon,x+\varepsilon)\subset X.$$

Exemplo 1.1. O intervalo $(7, \infty)$ é um conjunto aberto.

O intervalo $[7, \infty)$ não é um conjunto aberto.

Todo intervalo aberto é um conjunto aberto (intervalos não abertos — fechados ou semi-abertos — não são conjuntos abertos).

Exemplo 1.2. $(2,3) \cup (7,10)$ é claramente um conjunto aberto.

Teorema 1.3. (1) \emptyset $e \mathbb{R}$ são conjuntos abertos.

- (2) Se X e Y são abertos, então $X \cap Y$ é aberto.
- (3) Se $(X_{\alpha})_{\alpha \in A}$ é uma coleção qualquer de conjuntos abertos, então

$$\bigcup_{\alpha \in A} X_{\alpha}$$

é um conjunto aberto.

Demonstração. A primeira afirmação é evidente.

(2) Sejam X, Y abertos. Se $a \in X \cap Y$, então $a \in X$ e $a \in Y$.

Como X é aberto, existe $\varepsilon_1 > 0$ tal que

$$(a-\varepsilon_1,a+\varepsilon_1)\subset X.$$

Como Y é aberto, existe $\varepsilon_2 > 0$ tal que

$$(a - \varepsilon_2, a + \varepsilon_2) \subset Y$$
.

Seja $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\} > 0$, então $\varepsilon > 0$ e $\varepsilon \le \varepsilon_1$, $\varepsilon \le \varepsilon_2$. Logo,

$$(a - \varepsilon, a + \varepsilon) \subset (a - \varepsilon_1, a + \varepsilon_1) \subset X$$

e

$$(a - \varepsilon, a + \varepsilon) \subset (a - \varepsilon_2, a + \varepsilon_2) \subset Y$$

portanto

$$(a - \varepsilon, a + \varepsilon) \subset X \cap Y$$
,

mostrando que $X \cap Y$ é aberto.

(3) Seja $(X_{\alpha})_{\alpha \in A}$ uma família de abertos e seja $a \in \bigcup_{\alpha \in A} X_{\alpha}$. Então existe $\alpha_0 \in A$ tal que $a \in X_{\alpha_0}$. Como X_{α_0} é aberto, existe $\varepsilon > 0$ tal que

$$(a-\varepsilon,a+\varepsilon)\subset X_{\alpha_0}$$
.

Mas $X_{\alpha_0} \subset \bigcup_{\alpha \in A} X_{\alpha}$, logo

$$(a-\varepsilon,a+\varepsilon)\subset\bigcup_{\alpha\in A}X_{\alpha}.$$

Observação. Por indução é fácil provar que se

$$X_1, X_2, \ldots, X_n$$

são abertos, então $X_1 \cap X_2 \cap \cdots \cap X_n$ é aberto.

Porém, a interseção de uma família infinita de conjuntos abertos pode não ser aberta.

Por exemplo, definindo

$$I_n = \left(-\frac{1}{n}, \frac{1}{n}\right), \quad n \ge 1,$$

temos

$$\bigcap_{n\geq 1}I_n=\{0\}.$$

Os intervalos I_n são abertos, mas a interseção $\{0\}$ não é.

Sejam $X \subset \mathbb{R}$ e $a \in \mathbb{R}$. Chamamos a de ponto interior de X se existe $\varepsilon > 0$ tal que

$$(a-\varepsilon,a+\varepsilon)\subset X.$$

Denotamos por int(X) o conjunto de pontos interiores de X.

Observe que $\operatorname{int}(X) \subset X$. Além disso, $\operatorname{int}(X)$ é um conjunto aberto.

Ademais, X é aberto sse int(X) = X.

Exemplo 1.4. int([5,6]) = (5,6).

O próximo resultado descreve a estrutura dos conjuntos abertos na reta.

Teorema 1.5. Todo conjunto aberto $A \subset \mathbb{R}$ pode ser representado como uma união enumerável de intervalos abertos disjuntos.

A prova precisa do seguinte resultado técnico.

Lema 1.6. Se $\{I_{\alpha}\}_{{\alpha}\in L}$ é uma família qualquer de intervalos abertos com um ponto comum p, isto é, $p\in I_{\alpha}$ para todo $\alpha\in L$, então a união

$$\bigcup_{\alpha \in L} I_{\alpha}$$

é um intervalo aberto.

Demonstração do lema. Sejam

$$I_{\alpha} = (a_{\alpha}, b_{\alpha}),$$

onde a_{α}, b_{α} são os pontos extremos de I_{α} , não necessariamente finitos (no sentido de que a_{α} pode ser $-\infty$ e b_{α} pode ser ∞).

Definimos

$$a = \inf\{a_{\alpha} : \alpha \in L\}, \qquad b = \sup\{b_{\alpha} : \alpha \in L\}.$$

Mostremos que

$$\bigcup_{\alpha \in L} I_{\alpha} = (a, b).$$

A inclusão \subset é óbvia. De fato, como

$$a \le a_{\alpha} < b_{\alpha} \le b \quad \forall \alpha \in L,$$

tem-se

$$I_{\alpha} = (a_{\alpha}, b_{\alpha}) \subset (a, b) \quad \forall \alpha \in L.$$

Resta provar a inclusão oposta,

$$(a,b)\subset\bigcup_{\alpha\in L}I_{\alpha}.$$

Seja $x \in (a, b)$. Então x > a e x < b.

Como $a = \inf\{a_{\alpha} : \alpha \in L\}$ e x > a, existe $\gamma \in L$ tal que

$$x > a_{\gamma}$$
.

Como $b = \sup\{b_{\alpha} : \alpha \in L\}$ e x < b, existe $\beta \in L$ tal que

$$x < b_{\beta}$$
.

Se $x < b_{\gamma}$, então $x \in (a_{\gamma}, b_{\gamma})$.

Se $x \geq b_{\gamma}$, como o ponto comum p satisfaz

$$a_{\gamma} .$$

e também

$$a_{\beta}$$

tem-se

$$x \ge b_{\gamma} > p > a_{\beta}$$
.

Logo $x > a_{\beta}$ e como $x < b_{\beta}$, temos

$$x \in (a_{\beta}, b_{\beta}) \subset \bigcup_{\alpha \in L} (a_{\alpha}, b_{\alpha})$$

Isso prova o lema.

Estamos prontos para provar o teorema de estrutura dos abertos.

Demonstração do teorema. Como A é um conjunto aberto, para todo $x \in A$ existe $\varepsilon > 0$ tal que

$$(x - \varepsilon, x + \varepsilon) \subset A$$
.

Logo existem intervalos abertos I tais que

$$x \in I$$
 e $I \subset A$.

Seja I_x a união de todos esses intervalos. Como cada um deles contém o ponto x, pelo lema anterior, I_x é um intervalo aberto.

Consideremos a família de intervalos abertos

$$\{I_x : x \in A\}.$$

Claramente,

$$\bigcup_{x \in A} I_x = A,$$

já que $I_x \subset A$ para todo $x \in A$, e se $x \in A$ então $x \in I_x$.

Observe que, dados $x, y \in A$, ou $I_x \cap I_y = \emptyset$ ou $I_x = I_y$.

De fato, se $I_x \cap I_y \neq \emptyset$, então, como I_x e I_y são intervalos abertos com um ponto comum, a união

$$I = I_x \cup I_y$$

é um intervalo aberto também, pelo lema anterior. Além disso, $I \subset A$.

Mas $x \in I_x \subset I \subset A$, e como I_x é a união de todos os intervalos abertos que contêm x e estão contidos em A, segue que $I = I_x$.

Similarmente, $y \in I_y \subset I \subset A$, então $I = I_y$.

Portanto, $I_x = I_y$.

Resta provar que a família

$$\{I_x:x\in A\}$$

seja enumerável.

Cada intervalo I_x é aberto, então pela densidade de \mathbb{Q} , existe um número racional $r_x \in I_x$. Como os intervalos $\{I_x : x \in A\}$ são disjuntos (ou iguais), a função

$$f: \{I_x : x \in A\} \to \mathbb{Q}, \qquad f(I_x) = r_x,$$

é injetiva.

Como o contradomínio Q é enumerável, por um teorema do primeiro capítulo segue que

$$\{I_x : x \in A\}$$
 é enumerável.

Corolário 1.7. Seja I um intervalo aberto. Se $I = A \cup B$, onde A e B são conjuntos abertos e disjuntos, então ou $A = \emptyset$ ou $B = \emptyset$.

Demonstração. Se $A \neq \emptyset$ e $B \neq \emptyset$, então ambos podem ser representados como uniões de intervalos abertos disjuntos. Logo

$$I = A \cup B$$

seria uma união disjunta de pelo menos dois intervalos abertos — impossível, pois I é um intervalo aberto também.

página 4

2. Conjuntos fechados

Definição 2.1. Um ponto $a \in \mathbb{R}$ é um ponto limite (ou valor de aderência) de um conjunto $X \subset \mathbb{R}$ se existir uma sequência de pontos $x_n \in X$, $n \in \mathbb{N}$, tal que

$$a = \lim_{n \to \infty} x_n.$$

Exemplo 2.1. O número 0 é um valor de aderência do intervalo $(0, \infty)$ porque

$$\frac{1}{n} \in (0, \infty) \quad \forall n \ge 1$$

e

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Lema 2.2. Um ponto $a \in \mathbb{R}$ é um ponto limite de um conjunto $X \subset \mathbb{R}$ sse para todo $\varepsilon > 0$ tem-se

$$(a - \varepsilon, a + \varepsilon) \cap X \neq \emptyset.$$

Demonstração. " \Rightarrow : "Como a é um ponto limite de X, existe uma sequência $(x_n)_n \subset X$ tal que

$$\lim_{n \to \infty} x_n = a.$$

Seja $\varepsilon > 0$. Então existe $n_{\varepsilon} \in \mathbb{N}$ tal que para todo $n \geq n_{\varepsilon}, |x_n - a| < \varepsilon$

$$\Leftrightarrow x_n \in (a - \varepsilon, a + \varepsilon).$$

Mas $x_n \in X$, então $x_n \in (a - \varepsilon, a + \varepsilon) \cap X$, mostrando que $(a - \varepsilon, a + \varepsilon) \cap X \neq \emptyset$.

" \Leftarrow :"Como para todo $\varepsilon > 0$,

$$(a - \varepsilon, a + \varepsilon) \cap X \neq \emptyset,$$

para todo $n \ge 1$, pondo $\varepsilon = \frac{1}{n}$,

$$(a - \frac{1}{n}, a + \frac{1}{n}) \cap X \neq \emptyset.$$

Então existe $x_n \in (a - \frac{1}{n}, a + \frac{1}{n}) \cap X$. Portanto, para todo $n \ge 1, x_n \in X$ e como

$$x_n \in (a - \frac{1}{n}, a + \frac{1}{n}),$$

tem-se

$$|x_n - a| < \frac{1}{n}.$$

Mas $\lim_{n \to \infty} \frac{1}{n} = 0$, portanto $\lim_{n \to \infty} x_n = a$.

Evidentemente, um ponto a é aderente ao conjunto X sse para todo intervalo aberto Icontendo a, tem-se

$$I \cap X \neq \emptyset$$
.

Corolário 2.3. Se $X \subset \mathbb{R}$ é limitado inferiormente, então inf X é um ponto limite de X. Similarmente, se X é limitado superiormente então $\sup X$ é um ponto limite de X.

Demonstração. Proveremos a primeira afirmação, a segunda é similar.

Seja $a = \inf X$. Dado $\varepsilon > 0$, existe $x \in X$ tal que $x < a + \varepsilon$.

Por outro lado, $a \leq x$, então $a - \varepsilon \leq x$.

Logo $a - \varepsilon < x < a + \varepsilon$, e daí,

$$x \in (a - \varepsilon, a + \varepsilon).$$

Como $x \in X$, concluímos que $(a - \varepsilon, a + \varepsilon) \cap X \neq \emptyset$.

Definição 2.2. O fecho de um conjunto X, denotado por \overline{X} , é o conjunto de todos os pontos limite de X.

Observe que $X \subset \overline{X}$. Além disso, se $X \subset Y$ então $\overline{X} \subset \overline{Y}$.

Exemplo 2.4. O fecho de um intervalo (a, b) é [a, b].

O fecho de (a, ∞) é $[a, \infty)$.

Definição 2.3. Um conjunto X é fechado se $X = \overline{X}$.

Teorema 2.5. Um conjunto X é fechado sse dada uma sequência $(x_n)_n \subset X$, se $\lim_{n \to \infty} x_n = a$, então $a \in X$.

Demonstração. Se X é fechado, $(x_n)_n \subset X$ e $\lim_{n\to\infty} x_n = a$, então por definição, $a\in \overline{X} = X$, logo $a\in X$, provando a afirmação direta.

Vamos provar a recíproca. Se para toda sequência $(x_n)_n \subset X$ com $\lim_{n\to\infty} x_n = a$, tem-se $a \in X$, concluímos que todo ponto limite de X pertence a X, ou seja,

$$\overline{X} \subset X$$
.

Mas $X \subset \overline{X}$, logo $X = \overline{X}$, isto é, X é fechado.

Exemplo 2.6. O fecho de \mathbb{Q} é \mathbb{R} .

De fato, $\mathbb{Q} \subset \mathbb{R}$ e se $a \in \mathbb{R}$ então o número a pode ser aproximado por números racionais. De fato, pela densidade de \mathbb{Q} em \mathbb{R} , para todo $n \geq 1$, o intervalo $\left(a - \frac{1}{n}, a + \frac{1}{n}\right)$ contém um número racional r_n , logo $|r_n - a| < \frac{1}{n}$.

Então $(r_n)_n \subset \mathbb{Q}$ e $\lim_{n \to \infty} r_n = a$, mostrando que $a \in \overline{\mathbb{Q}}$

Portanto $\mathbb{R} \subset \overline{\mathbb{Q}}$, e daí, $\overline{\mathbb{Q}} = \mathbb{R}$.

Teorema 2.7. Um conjunto $F \subset \mathbb{R}$ é fechado sse seu complemento $\mathbb{R} \setminus F$ é aberto.

Demonstração. " \Rightarrow ": Suponha que F seja fechado.

Dado $a \in \mathbb{R} \setminus F$, como $F = \overline{F}$, tem-se $a \notin \overline{F}$.

Logo existe $\varepsilon_0 > 0$ tal que

$$(a - \varepsilon_0, a + \varepsilon_0) \cap F = \emptyset,$$

e daí,

$$(a - \varepsilon_0, a + \varepsilon_0) \subset \mathbb{R} \setminus F$$
.

Portanto $\mathbb{R} \setminus F$ é aberto.

"\(= \)": Suponha que $\mathbb{R} \setminus F$ seja aberto.

Seja $(x_n)_n \subset F$ uma sequência de pontos em F tal que

$$\lim_{n \to \infty} x_n = a.$$

Vamos provar que $a \in F$ (o que vai concluir a prova do teorema, devido ao teorema anterior). Se $a \notin F$ então $a \in \mathbb{R} \setminus F$, então existe $\varepsilon_0 > 0$ tal que

$$(a - \varepsilon_0, a + \varepsilon_0) \subset \mathbb{R} \setminus F$$
.

$$\Rightarrow (a - \varepsilon_0, a + \varepsilon_0) \cap F = \emptyset.$$

Mas como $\lim_{n\to\infty} x_n = a$, existe $n_0 \in \mathbb{N}$ tal que se $n \geq n_0$, então

$$|x_n - a| < \varepsilon_0$$

$$\Rightarrow x_n \in (a - \varepsilon_0, a + \varepsilon_0).$$

Por outro lado, $x_n \in F$, então

$$x_n \in (a - \varepsilon_0, a + \varepsilon_0) \cap F$$

e daí

$$(a - \varepsilon_0, a + \varepsilon_0) \cap F = \emptyset,$$

uma contradição.

Teorema 2.8. (1) \emptyset $e \mathbb{R}$ são fechados.

- (2) Se F_1, F_2, \ldots, F_n são fechados, então $F_1 \cup F_2 \cup \cdots \cup F_n$ é fechado.
- (3) Se $\{F_{\alpha}\}_{{\alpha}\in L}$ são fechados, então

$$\bigcap_{\alpha \in L} F_{\alpha} \text{ \'e fechado.}$$

Demonstração. (1) é evidente, já que

$$\emptyset = \mathbb{R} \setminus \mathbb{R}$$
 e $\mathbb{R} = \mathbb{R} \setminus \emptyset$.

(2) Temos que

$$\mathbb{R} \setminus (F_1 \cup \cdots \cup F_n) = (\mathbb{R} \setminus F_1) \cap \cdots \cap (\mathbb{R} \setminus F_n).$$

Como F_1, \ldots, F_n são fechados, $\mathbb{R} \setminus F_1, \ldots, \mathbb{R} \setminus F_n$ são abertos, então

$$(\mathbb{R}\setminus F_1)\cap\cdots\cap(\mathbb{R}\setminus F_n)$$

é aberto, logo

$$F_1 \cup \cdots \cup F_n$$
,

que é o complementar de

$$\mathbb{R}\setminus (F_1\cup\cdots\cup F_n),$$

é fechado.

(3) Argumento similar, exercício.

3. Pontos de acumulação

Seja $X \subset \mathbb{R}$. Um número $a \in \mathbb{R}$ é um ponto de acumulação de X se

$$\forall \varepsilon > 0, (a - \varepsilon, a + \varepsilon)$$
 contém algum ponto de X, distinto de a.

Denotamos por X^{\prime} o conjunto de pontos de acumulação de X.

Logo,

$$a \in X' \iff \forall \varepsilon > 0, \ \exists x \in X \ \text{tal que} \ |x - a| < \varepsilon, \ x \neq a.$$

Teorema 3.1. Sejam $X \subset \mathbb{R}$ e $a \in \mathbb{R}$. Então $a \in X'$ se e somente se existe uma sequência de pontos $(x_n)_n \subset X$, diferentes dois a dois, tal que

$$\lim_{n \to \infty} x_n = a.$$

Demonstração. " \Rightarrow " Seja $a \in X'$.

Para $\varepsilon_1 = 1$ existe $x_1 \in X$, $x_1 \neq a$ tal que

$$|x_1 - a| < 1.$$

Seja $\varepsilon_2 = \min\left\{\frac{1}{2}, |x_1 - a|\right\}$. Então $\varepsilon_2 > 0$ e existe $x_2 \in X, x_2 \neq a$ tal que

$$|x_2-a|<\varepsilon_2.$$

Logo

$$|x_2 - a| < \frac{1}{2}$$

е

$$|x_2 - a| < |x_1 - a|,$$

o que em particular implica $x_2 \neq x_1$.

Seja $\varepsilon_3 = \min\left\{\frac{1}{3}, |x_2 - a|\right\}$. Logo $\varepsilon_3 > 0$; então existe $x_3 \neq a, x_3 \in X$ tal que

$$|x_3-a|<\varepsilon_3.$$

Logo

$$|x_3 - a| < \frac{1}{3}$$

е

$$|x_3 - a| < |x_2 - a| < |x_1 - a|,$$

o que mostra que $x_3 \neq x_2, x_3 \neq x_1$.

Por indução, para todo $n \in \mathbb{N}$, construímos pontos $x_1, \ldots, x_n \in X$, diferentes dois a dois, com

$$|x_n - a| < \frac{1}{n}.$$

Portanto, $\lim_{n\to\infty} x_n = a$, e os pontos $(x_n)_{n\in\mathbb{N}}$ são diferentes dois a dois.

"\(= \)": Suponha que $(x_n)_n \subset X$ são diferentes dois a dois, e

$$\lim_{n \to \infty} x_n = a.$$

Seja $\varepsilon > 0$. Então existe $n_{\varepsilon} \in \mathbb{N}$ tal que

$$|x_n - a| < \varepsilon$$
 para todo $n \ge n_{\varepsilon}$.

Como $(x_n)_n$ são diferentes dois a dois, no máximo um deles é igual a a. Então, claramente existe $n \ge n_{\varepsilon}$ com $x_n \ne a$ e $|x_n - a| < \varepsilon$.

Como $x_n \in X$, temos

$$(a - \varepsilon, a + \varepsilon) \cap X \neq \emptyset,$$

mostrando que $a \in X'$.

Observação 3.1. $X' \subset X \in X' = X \cup X'$.

Logo X é fechado sse $X' \subset X$.

4. Conjuntos compactos

Intuitivamente, em topologia, a compacidade é uma espécie de finitude.

Uma cobertura aberta de um conjunto $X \subset \mathbb{R}$ é uma família $(D_{\alpha})_{\alpha \in L}$ de conjuntos abertos tal que

$$X \subset \bigcup_{\alpha \in L} D_{\alpha}.$$

Uma subcobertura é uma subfamília $(D_{\alpha})_{\alpha \in L'}, L' \subset L$, tal que ainda

$$X \subset \bigcup_{\alpha \in L'} D_{\alpha}.$$

A subcobertura é finita se o conjunto L' de índices é finito.

Definição 4.1. Um conjunto $X \subset \mathbb{R}$ é compacto se toda cobertura aberta dele possui uma subcobertura finita.

Em outras palavras, X é compacto se dados abertos $(D_{\alpha})_{\alpha \in L}$ tais que

$$X \subset \bigcup_{\alpha \in L} D_{\alpha},$$

existem $\alpha_1, \ldots, \alpha_n \in L$ tais que

$$X \subset D_{\alpha_1} \cup \cdots \cup D_{\alpha_n}$$
.

Exemplo 4.1. Todo conjunto finito é compacto.

Teorema 4.2 (Heine–Borel). Seja [a,b] um intervalo limitado e fechado. Então [a,b] é um conjunto compacto.

Demonstração. Seja $\{D_{\alpha}\}_{{\alpha}\in L}$ uma cobertura aberta do intervalo [a,b].

Vamos provar que existe uma subcobertura finita. Considere o conjunto

$$X = \{x \in [a, b] : [a, x] \text{ possui uma subcobertura finita}\}.$$

O objetivo é provar que $b \in X$.

Primeiro observe que $a \in X$, então $X \neq \emptyset$. De fato, $[a, a] = \{a\}$, e como $a \in \bigcup_{\alpha \in L} D_{\alpha}$, existe $\alpha_0 \in L$ tal que $a \in D_{\alpha_0}$. Logo $\{D_{\alpha_0}\}$ é uma subcobertura finita (com um elemento) de [a, a].

Como $X \subset [a, b], X$ é limitado, portanto admite um supremo. Seja $c = \sup X$.

Claramente $c \leq b$. Vamos mostrar que c = b.

Suponha por contradição que c < b. Como $c \in \bigcup_{\alpha \in L} D_{\alpha}$, existe $\alpha_0 \in L$ tal que $c \in D_{\alpha_0}$, que é aberto, então existe $\varepsilon_0 > 0$ tal que

$$(c-\varepsilon_0,c+\varepsilon_0)\subset D_{\alpha_0}$$
.

Como c < b, podemos escolher $\varepsilon_0 > 0$ pequeno o suficiente que ainda temos $c + \varepsilon_0 < b$.

Por outro lado, $c - \varepsilon_0 < c = \sup X$, logo existe $x \in X$ tal que $c - \varepsilon_0 < x$.

Como $x \in X$, existe uma subcobertura finita de [a, x], ou seja, existem $\alpha_1, \ldots, \alpha_n \in L$ tais que

$$[a,x] \subset D_{\alpha_1} \cup \cdots \cup D_{\alpha_n}.$$

Mas

$$[x, c + \frac{\varepsilon_0}{2}] = [a, x] \cup [x, c + \frac{\varepsilon_0}{2}] \subset [a, x] \cup (c - \varepsilon_0, c + \varepsilon_0)$$

está contido em

$$D_{\alpha_1} \cup \cdots \cup D_{\alpha_n} \cup D_{\alpha_0}$$
,

que é uma cobertura finita, logo

$$c + \frac{\varepsilon_0}{2} \in X$$
,

contradição, pois $c + \frac{\varepsilon_0}{2} > c$ e $c = \sup X$.

Portanto c = b, ou seja, $b = \sup X$.

A prova quase acabou, mas resta provar que na verdade $b \in X$. Vamos usar um argumento similar ao anterior.

Como $b \in \bigcup_{\alpha \in L} D_{\alpha}$, existe $\alpha_0 \in L$ tal que $b \in D_{\alpha_0}$, que é aberto, então existe $\varepsilon > 0$ tal que

$$(b-\varepsilon,b+\varepsilon)\subset D_{\alpha_0}.$$

Como $b - \varepsilon < b = \sup X$, existe $x \in X$ tal que $b - \varepsilon < x$.

Como $x \in X$, existem $\alpha_1, \ldots, \alpha_n \in L$ tais que

$$[a,x] \subset D_{\alpha_1} \cup \cdots \cup D_{\alpha_n}.$$

Portanto,

$$[a,b] = [a,x] \cup [x,b] \subset [a,x] \cup (b-\varepsilon,b+\varepsilon)$$

está contido em

$$D_{\alpha_1} \cup \cdots \cup D_{\alpha_n} \cup D_{\alpha_0}$$

que é uma cobertura finita.

Concluímos que $b \in X$, então [a,b] possui uma subcobertura finita, provando sua compacidade.

Lema 4.3. Sejam $K \subset \mathbb{R}$ um conjunto compacto e $a \in \mathbb{R}$. Se $a \notin K$ então existe $\varepsilon_0 > 0$ tal que $(a - \varepsilon_0, a + \varepsilon_0) \cap K = \emptyset$. Em outras palavras,

$$|x - a| \ge \varepsilon_0$$
 para todo $x \in K$.

Demonstração. Como $a \notin K$, para todo $x \in K$, $a \neq x$, então $d_x = |a - x| > 0$. Seja $\varepsilon_x = \frac{d_x}{3}$. A família de intervalos abertos

$$\mathcal{G} = \{(x - \varepsilon_x, x + \varepsilon_x)\}_{x \in K}$$

é uma cobertura aberta de K, um compacto. Logo, existe uma subcobertura finita

$$\mathcal{F} = \{(x_1 - \varepsilon_{x_1}, x_1 + \varepsilon_{x_1}), \dots, (x_n - \varepsilon_{x_n}, x_n + \varepsilon_{x_n})\}.$$

Seja $\varepsilon_0 = \min\{\varepsilon_{x_1}, \dots, \varepsilon_{x_n}\}$. Então $\varepsilon_0 > 0$.

Vamos provar que $|x - a| \ge \varepsilon_0$ para todo $x \in K$.

Seja $x \in K$. Sendo \mathcal{F} uma cobertura de K, existe um índice $j \in \{1, \ldots, n\}$ tal que

$$x \in (x_j - \varepsilon_{x_j}, x_j + \varepsilon_{x_j})$$

 $\Rightarrow |x - x_j| < \varepsilon_{x_j}.$

Suponha por contradição que

$$|x-a| < \varepsilon_0 \le \varepsilon_{x_i}$$

(porque ε_0 é o mínimo dos números $\varepsilon_{x_1}, \ldots, \varepsilon_{x_n}$).

Então $|x-x_j| < \varepsilon_{x_j}$, $|x-a| < \varepsilon_{x_j}$, e pela desigualdade triangular,

$$d_{x_j} = |a - x_j| \le |a - x| + |x - x_j| < \varepsilon_{x_j} + \varepsilon_{x_j} = 2\varepsilon_{x_j} = \frac{2}{3}d_{x_j} < d_{x_j},$$

contradição.

Portanto, $|x - a| \ge \varepsilon_0$.

Teorema 4.4. Um conjunto $K \subset \mathbb{R}$ é compacto se, e somente se, K é fechado e limitado.

Demonstração. " \Rightarrow " Seja K um conjunto compacto.

Primeiro provamos que ele é limitado. Claramente

$$K\subset \bigcup_{x\in K}(x-1,x+1).$$

Sendo K compacto, K possui uma subcobertura finita, isto é, existem $x_1, \ldots, x_n \in K$ tais que

$$K \subset (x_1 - 1, x_1 + 1) \cup \cdots \cup (x_n - 1, x_n + 1).$$

Sejam $M = \max\{x_1 + 1, \dots, x_n + 1\}$ e $m = \min\{x_1 - 1, \dots, x_n - 1\}$.

Se $x \in K$ então existe um índice $j \in \{1, ..., n\}$ tal que $x \in (x_j - 1, x_j + 1)$. Logo,

$$m \le x_j - 1 < x < x_j + 1 \le M.$$

Portanto $x \in [m, M]$ para todo $x \in K$, provando que o conjunto K é limitado.

Agora vamos provar que o conjunto K é fechado.

Seja $(x_n)_n \subset K$ uma sequência e suponha que

$$\lim_{n \to \infty} x_n = a.$$

Vamos provar que $a \in K$. Suponha por contradição que $a \notin K$.

Como K é compacto, pelo lema anterior existe $\varepsilon_0 > 0$ tal que

$$|x-a| \ge \varepsilon_0$$
 para todo $x \in K$.

Mas como $\lim_{n\to\infty} x_n = a$, existe $n_0 \in \mathbb{N}$ tal que

$$|x_n - a| < \varepsilon_0$$
 para todo $n \ge n_0$,

o que é uma contradição, já que $x_n \in K$ para todo n.

Portanto $a \in K$, mostrando que o conjunto K é fechado.

" \Leftarrow " Suponha que o conjunto K seja fechado e limitado. Vamos provar que ele é compacto. Seja

$$K \subset \bigcup_{\alpha \in L} U_{\alpha}$$

uma cobertura aberta de K.

Sendo limitado, existe um intervalo limitado [a, b] tal que

$$K \subset [a,b]$$
.

Sendo fechado, seu complemento $K^c=\mathbb{R}\setminus K$ é aberto.

Então

$$[a,b] \subset \mathbb{R} = K \cup K^c \subset \bigcup_{\alpha \in I} U_\alpha \cup K^c,$$

ou seja, temos uma cobertura aberta do intervalo fechado e limitado [a, b].

Pelo teorema de Heine-Borel, [a, b] é compacto, então existe uma subcobertura finita, isto é, existem índices $\alpha_1, \ldots, \alpha_n \in L$, tais que

$$[a,b] \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \cup K^c.$$

Mas $K \subset [a, b]$, logo

$$K \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} \cup K^c$$

e como $K \cap K^c = \emptyset$, segue que

$$K \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$$

ou seja, ele possui uma subcobertura finita, assim provando sua compacidade.

Exemplo 4.5. Qualquer união finita de intervalos fechados e limitados, por exemplo $[2,3] \cup [6,9]$ é um conjunto compacto. Isto é porque uma união finita de conjuntos fechados é fechado, e uma união finita de conjuntos limitados é limitado.

Exemplo 4.6. O conjunto

$$K = \left\{ \frac{1}{n} \colon n \ge 1 \right\} \cup \{0\}$$

é claramente limitado e também fechado, já que 0 é o único ponto limite de $\left\{\frac{1}{n}: n \geq 1\right\}$. Então pelo teorema anterior, K é compacto.

Observe que ele não é um intervalo, nem uma união finita de intervalos.

Teorema 4.7. Um conjunto K é compacto se, e somente se, toda sequência de pontos em K possui uma subsequência convergente para um elemento de K.

Demonstração. " \Rightarrow " Sejam K um compacto e $(x_n)_n \subset K$ uma sequência. K é limitado, então $(x_n)_n$ é uma sequência limitada. Por um teorema anterior, $(x_n)_n$ possui um valor de aderência, ou seja, uma subsequência convergente $(x_{n_k})_k$.

Seja

$$a = \lim_{k \to \infty} x_{n_k}.$$

Como $(x_{n_k})_k \subset K$ e K é fechado, o limite $a \in K$.

" \Leftarrow " Suponha que toda sequência em K possua uma subsequência convergente em K.

Vamos provar que o conjunto K é compacto. Pelo teorema anterior, isto é equivalente ao provar que é fechado e limitado.

Seja $(x_n)_n \subset K$ uma sequência convergente e seja

$$a = \lim_{n \to \infty} x_n.$$

A sequência $(x_n)_n$ possui uma subsequência convergente com limite um elemento de K.

Mas como $\lim_{n\to\infty} x_n=a$, toda subsequência dela converge para o mesmo ponto a. Logo $a\in K$, mostrando que o conjunto K é fechado.

Suponha por contradição que o conjunto K não seja limitado. Então para todo $n \in \mathbb{N}$ existe $x_n \in K$ tal que

$$|x_n| \geq n$$
.

Logo

$$\lim_{n \to \infty} |x_n| = \infty.$$

Qualquer subsequência de $(x_n)_n$ vai ter a mesma propriedade, então não pode convergir para um número em K, contradição.

Portanto, K é limitado.

Teorema 4.8. Um conjunto K é compacto se e somente se, todo conjunto infinito $X \subset K$ tem um ponto de acumulação em K.

Demonstração. Exercício.

Corolário 4.9. Todo conjunto infinito e limitado possui ponto de acumulação.

Demonstração. Exercício.