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1. Introduction to the main topics of the course

1.1. Additive random processes. Let ξ0, ξ1, . . . , ξn−1, ξn, . . . be a se-
quence of independent and identically distributed (i.i.d.) real random
variables. Let

Sn := ξ0 + ξ1 + · · ·+ ξn−1

be the partial sum process and let

1

n
Sn =

1

n
(ξ0 + ξ1 + · · ·+ ξn−1)

be the average partial sum process.

Question. What is the behavior of these averages when n→∞?

Remark 1.1. Recall that two random variables ξ1 and ξ2 are identi-
cally distributed if P{ξ1 ∈ E} = P{ξ2 ∈ E} for any Borel measurable
set E ⊂ R. In this case Eξ1 = Eξ2 and in fact Eφ(ξ1) = Eφ(ξ2) for any
integrable function φ : R→ R.

Recall also that the random variables ξ1, . . . , ξn are independent if
for any Borel measurable sets E1, . . . , En ⊂ R,

P{ξ1 ∈ E1 ∧ . . . ∧ ξn ∈ En} = P{ξ1 ∈ E1} · · ·P{ξn ∈ En} .

Theorem 1.1 (The law of large numbers - LLN). Given i.i.d. sequence
ξ0, ξ1, . . . , ξn−1, ξn, . . . of real random variables, if Eξ0 <∞ then

1

n
Sn → Eξ0 a.s.

In particular, convergence in probability also holds. That is, ∀ ε > 0,

P
{∣∣∣∣ 1nSn − Eξ0

∣∣∣∣ > ε

}
→ 0 as n→∞.

Question. It is natural to ask if there is a rate of convergence to 0 of
the probability of the tail event above. It turns out that there is, as
shown by the large deviations principle (LDP) below.
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Theorem 1.2 (LDP of Cramér). Assume that the common distribution
of the i.i.d. sequence of real random variables ξ0, ξ1, . . . , ξn−1, ξn, . . .
satisfies a certain growth condition and is non-trivial. Then ∀ ε > 0,

P
{∣∣∣∣ 1nSn − Eξ0

∣∣∣∣ > ε

}
� e−c(ε)n as n→∞,

where c(ε) � c0ε
2 for some c0 > 0.

More precisely, assuming that the common distribution has finite ex-
ponential moments:

M(t) := E
(
etξ0
)
<∞ ∀t ∈ R,

it follows that

lim
n→∞

1

n
logP

{∣∣∣∣ 1nSn − Eξ0

∣∣∣∣ > ε

}
= −c(ε)

where

c(ε) = sup
t∈R

(tε− logM(t))

is the Legendre transform of logM(t).
This rate function c(ε) is strictly convex near ε = 0, with c(0) = 0,

c′(0) = 0 and c′′(0) > 0, so that c(ε) � c0ε
2.

Remark 1.2. The LDP is a very precise but asymptotic result. We
are usually more interested in finitary, albeit less precise results, which
will be referred to as large deviations type (LDT) estimates. A typical
such result is the folllowing.

Theorem 1.3 (Hoeffding’s Inequality). Assume the much stronger
growth condition |ξ0| ≤ C a.s. Then ∀ ε > 0 the following holds for
all n ∈ N:

P
{∣∣∣∣ 1nSn − Eξ0

∣∣∣∣ > ε

}
≤ 2e−(2C)−2ε2n .

Question. What is the typical size of the sum process Sn − nEξ0?
Note that by the LLN, almost surely we have

Sn − nEξ0

n
→ 0,

which implies that Sn − nEξ0 � n. It turns out that from a certain
point of view, Sn − nEξ0 �

√
n. More precisely, the following central

limit theorem (CLT) holds.
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Theorem 1.4 (CLT of Lindeberg-Lévy). Consider an i.i.d. sequence
ξ0, ξ1, . . . , ξn−1, ξn, . . . of real random variables and assume that the
variance σ2 = Eξ2

0 − (Eξ0)2 ∈ (0,∞). Then for all [a, b] ⊂ R,

P
{
Sn − nEξ0

σ
√
n

∈ [a, b]

}
→
∫ b

a

e−
x2

2
dx√
2π

as n→∞.

In other words, with the appropriate scaling we have the convergence
in distribution to the standard normal distribution

Sn − nEξ0

σ
√
n

d−→ N (0, 1) .

1.2. Multiplicative random processes. Let µ be a probability mea-
sure on the group of matrices GL2(R). Given g0, g1, . . . , gn−1, gn, . . . an
i.i.d. sequence of random matrices chosen according to the probability
µ, consider

Πn := gn−1 · · · g1 g0

the corresponding multiplicative process.
Recall that for a matrix g ∈ GL2(R), the norm is its maximal ex-

pansion
‖g‖ = max

‖v‖=1
‖gv‖

while the co-norm is its minimal expansion

m(g) = min
‖v‖=1

‖gv‖ =
∥∥g−1

∥∥−1
.

The LLN for additive random processes has the following analog for
multiplicative random processes.

Theorem 1.5 (Furstenberg-Kesten). Assuming the integrability con-
dition E (log ‖g‖) dµ(g) < ∞, there are two numbers L+(µ) ≥ L−(µ)
called the maximal respectively the minimal Lyapunov exponents of µ
such that

1

n
log‖Πn‖ → L+(µ), a.s.

and
1

n
log‖Π−1

n ‖−1 → L−(µ), a.s.

In particular we also have convergence in probability: ∀ ε > 0,

P
{∣∣∣∣ 1n log‖Πn‖ − L+(µ)

∣∣∣∣ > ε

}
→ 0 as n→∞ .

Instead of the maximal (or minimal) expansion of the random matrix
products, we may consider the expansion of any vector. That is, given
v ∈ R2, v 6= 0 consider the random walk {gn−1 · · · g1g0v : n ≥ 0}.



4 A. CAI, P. DUARTE, AND S. KLEIN

Theorem 1.6 (Furstenberg-Kifer’s non-random filtration). For any
given vector v ∈ R2, v 6= 0, either

1

n
log‖Πnv‖ → L+(µ) as n→∞ ,

or
1

n
log‖Πnv‖ → L−(µ) as n→∞ .

Remark 1.3. It turns out that under certain generic conditions to
be defined in the future (namely the irreducibility of the measure µ),
we have that ∀ v ∈ R2, v 6= 0 the almost sure limit is the maximal
Lyapunov exponent:

1

n
log‖Πnv‖ → L+(µ) a.s.

Moreover, if L+(µ) > L−(µ) then

E
(

1

n
log‖Πnv‖

)
→ L+(µ)

uniformly in v.

Question. It is natural to ask if in this multiplicative random setting
there are analogues of the LDP, LDT and CLT from the additive set-
ting. As shown below, the answer is affirmative, at least in the generic
setting. The precise statements will be provided later.

Theorem 1.7 (LDP - Le Page). Under generic assumptions, if L+(µ) >
L−(µ), then ∀ v ∈ R2, v 6= 0 and ∀ ε > 0,

P
{∣∣∣∣ 1n log‖Πn‖ − L+(µ)

∣∣∣∣ > ε

}
� e−c(ε)n as n→∞.

Theorem 1.8 (LDT - Duarte, Klein). Under generic assumptions, if
L+(µ) > L−(µ), then ∀ v ∈ R2, v 6= 0, ∀ ε > 0 and ∀n ∈ N,

P
{∣∣∣∣ 1n log‖Πn‖ − L+(µ)

∣∣∣∣ > ε

}
≤ Ce−c(ε)n

for some constant C <∞ and c(ε) > 0.

Theorem 1.9 (CLT - Le Page). Under generic assumptions, there is
σ ∈ (0,∞) such that ∀ v ∈ R2, v 6= 0,

P
{

log‖Πnv‖ − nL+(µ)

σ
√
n

∈ [a, b]

}
→
∫ b

a

e−
x2

2
dx√
2π

as n→∞.
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1.3. Observed dynamical systems. Let (M, f) be a dynamical sys-
tem where M is a compact metric space and f : M →M is continuous.
Consider an appropriate f -invariant measure ν ∈ Prob(M).

Remark 1.4. Recall that v is called f -invariant if f∗ν = ν, which is
equivalent to saying that ν(E) = ν(f−1(E)) for all Borel measurable
E ⊂M .

Moreover, ν is called ergodic w.r.t. f if all f -invariant sets (i.e. E
such that E = f−1(E)) are of ν measure 0 or 1. Note that ergodic
measures are extremal points in the the space of f -invariant measures
(this space is convex and weak-∗ compact).

The triple (M, f, ν) is called a measure-preserving dynamical system
(MPDS). Given an observable ξ : M → R in an appropriate space of
functions, the quadruple (M, f, ν, ξ) is called an observed MPDS.

For all iterates j, consider the real-valued random variable on M

ξj := ξ ◦ f j .
Since ν is f -invariant, and hence f j-invariant for all j, the sequence

ξ0, ξ1 . . . , ξn−1, ξn, . . . is identically distributed. However, in general this
sequence is not independent.

Consider the sum process, that is, the Birkhoff sums

Snξ := ξ + ξ ◦ f + · · ·+ ξ ◦ fn−1 = ξ0 + ξ1 + · · ·+ ξn−1 .

Birkhoff’s ergodic theorem is a generalization of the LLN in this setting.

Theorem 1.10 (Birkhoff’s ergodic theorem). Assume that ν is ergodic
w.r.t. f and that

∫
M
|ξ| dν <∞. Then

1

n
Snξ →

∫
ξdν ν-a.e.

In particular the convergence in measure also holds: ∀ε > 0,

ν

{
x ∈M :

∣∣∣∣ 1nSnξ(x)−
∫
M

ξ dν

∣∣∣∣ > ε

}
→ 0 as n→∞.

Question. A fundamental problem in ergodic theory is to establish
statistical properties like LDP, LDT, CLT for various kinds of observed
dynamical systems.

In other words, the question is to determine for which dynamical
system (M, f), for which appropriate choice of f -invariant measures ν
and for which kinds of observables ξ one has an LDT estimate

ν

{
x ∈M :

∣∣∣∣ 1nSnξ(x)−
∫
M

ξ dν

∣∣∣∣ > ε

}
≤ C e−c(ε)n
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or a CLT

ν

{
x ∈M :

Snξ(x)− n
∫
ξ dν

σ
√
n

∈ [a, b]

}
→
∫ b

a

e−
x2

2
dx√
2π

.

A short but vague answer is that systems with some hyperbolicity
should satisfy such statistical properties. The question is extremely far
reaching, and for now it only has a very incomplete rigorous answer.

Some of the main tools used to address it, which will make their entry
in this course in due time, are the transition (or Markov) operator and
the transfer (or Ruelle) operator.

1.4. The moment method and Bernstein’s trick. Let ξ be a ran-
dom variable on some probability space (Ω,F,P). The distribution (or
law) of ξ is the probability measure µξ on R given by

µξ(E) = P {ξ ∈ E} = P
{
ξ−1E

}
where E ⊂ R is Borel measurable. In other words, µξ = ξ∗P. Given a
random variable ξ and µ ∈ Prob(R), we write ξ ∼ µ when µξ = µ.

Example 1. The continuous uniform distribution on some interval
[a, b] ⊂ R is

µunif =
1

b− a
1[a,b]dm

which is absolutely continuous to the Lebesgue measure m on R.
Example 2. The standard normal distribution

N (0, 1) = G(t)dm

where G(t) = 1√
2π
e−

t2

2 is the Gaussian.

Remark 1.5. The distribution of a random variable ξ determines its
expectation, standard deviation, moments, etc. For example, its ex-
pectation satisfies

Eξ =

∫
R
xdµξ(x).

More generally, if ϕ : R→ R is Lebesgue integrable, then

Eϕ(ξ) =

∫
R
ϕ(x)dµξ(x).
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In fact, by the change of variables formula we have

Eϕ(ξ) =

∫
Ω

ϕ(ξ(ω))dP(ω)

=

∫
R
ϕ(x)dξ∗P(x)

=

∫
R
ϕ(x)dµξ(x).

We recall the meaning of random variables being identically dis-
tributed and independent in the following.

Definition 1.1. ξ1 and ξ2 are identically distributed if µξ1 = µξ2 .
ξ1, ξ2, · · · , ξn are independent if

µ(ξ1···ξn) = µξ1 × · · · × µξn .
Namely, the joint distribution is precisely the product measure.

From now on, let us fix some notations as follows.
ξ is the real random variable.
µ = Eξ is the expectation of ξ.
σ2 = E(ξ − µ)2 = Eξ2 − µ2 ∈ [0,∞] is the variance of ξ.
Eξn is called the n-th moment of ξ. By the Hölder inequality we

have Eξ . (Eξ2)
1
2 and Eξ2 . (Eξ4)

1
2 etc. Note that working with even

moments avoids negativity.
The following lemma is trivial but extremely useful throughout prob-

ability theory.

Lemma 1.1 (Markov’s inequality). If X ≥ 0 and λ > 0 then

P {X ≥ λ} ≤ EX
λ
.

Proof. Denote E = {X ≥ λ}, then we have EX ≥
∫
E
XdP ≥ λP(E).

�

We will use Markov’s inequality to prove weak LLN and strong LLN
respectively under some minor additional conditions.

Theorem 1.11 (Weak LLN). Given i.i.d. sequence ξ0, ξ1, . . . , ξn−1, ξn, . . .
of real random variables, if Eξ2

0 <∞ then ∀ ε > 0,

P
{∣∣∣∣ 1nSn − Eξ0

∣∣∣∣ > ε

}
→ 0 as n→∞.

Proof. Without loss of generality, we may assume that µ = 0. Then it

is enough to show P
{
S2
n

n2 > ε2
}

= P {S2
n > n2ε2} → 0 as n→∞.
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By Markov’s inequality, we have

P
{
S2
n > n2ε2

}
≤ ES2

n

n2ε2
.

Note that S2
n = (

∑n−1
j=0 ξj)

2 =
∑n−1

j=0 ξ
2
j +
∑

j 6=k ξjξk. Taking expecta-
tions on both sides, we obtain

ES2
n =

n−1∑
j=0

Eξ2
j +

∑
j 6=k

E(ξjξk) =
n−1∑
j=0

Eξ2
j = nEξ2

0 .

Here the second equality uses the independence of the random vari-
ables.

This shows that

P
{
S2
n > n2ε2

}
≤ ES2

n

nε2
→ 0 as n→∞.

This finishes the proof of weak LLN. �

Remark 1.6. If Xn → X a.s. then Xn → X in probability. In general,
the converse is not true. However, if ∀ ε > 0 we have

∞∑
n=0

P {|Xn −X| > ε} <∞,

then Xn → X a.s. This is ensured by Borel-Cantelli Lemma.

Theorem 1.12 (Strong LLN). Given i.i.d. sequence ξ0, ξ1, . . . , ξn−1, ξn, . . .
of real random variables, if Eξ4

0 <∞ then Sn
n
→ µ a.s.

Proof. Without loss of generality, we may again assume µ = 0. By
Remark 1.6, it is enough to show P {S4

n > n4ε4} ≤ c
n2 where c is a

constant.
By Markov’s inequality, we have

P
{
S4
n > n4ε4

}
≤ ES4

n

n4ε4
.

By direct computations and use the independence condition we get
ES4

n = O(n2). Therefore,

P
{
S4
n > n4ε4

}
.

1

n2
→ 0 as n→∞.

�

In the following, we are going to prove the following LDT estimates.
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Theorem 1.13 (Cramér’s inequality). Assume that the common distri-
bution of the i.i.d. sequence of real random variables ξ0, ξ1, . . . , ξn−1, ξn, . . .
satisfies a certain growth condition and σ2 > 0. Then ∀ ε > 0,

P
{∣∣∣∣ 1nSn − µ

∣∣∣∣ > ε

}
≤ 2e−Ĉ(ε)n as n→∞,

where Ĉ(ε) ≈ C0ε
2 > 0 with constant C0 > 0.

We introduce the Bernstein’s trick first.
Let X be a random variable and λ ∈ R. Then

X ≥ λ⇔ etX ≥ etλ,∀ t > 0.

By Markov’s inequality,

P {X ≥ λ} = P
{
etX ≥ etλ

}
≤ E(etX)

etλ
,

which gives P {X ≥ λ} ≤ e−tλE(etX).

Definition 1.2. The function M : R → (0,∞) defined by M(t) =
E(etX) is called the moment generating function of X while c(t) =
logM(t) is called the cumulant generating function of X.

Proof of Theorem1.13 . Without loss of generality, assume µ = 0. Note
that it is enough to estimate P {Sn > nε}, the other part P(−Sn > nε)
is the same. This is why the coefficient 2 appears in the r.h.s. of the
inequality.

By Bernstein’s trick, we have

P {Sn > nε} ≤ e−tnεE(etSn).

Typically, E(etSn) can be exponentially large. But if we can prove
something like

E(etSn) ≤ enLt
2

,

then we would have

P {Sn > nε} ≤ e−ntεenLt
2

= e−n(tε−Lt2) = e−nc(ε)

It is easy to check that c(ε) = 1
4L
ε2 is the maximum value of tε− Lt2.

Thus it is enough to estimate E(etSn).
Using the independence condition, we have

E(etSn) = E(etξ0) · · ·E(etξn−1) = (E(etξ0))n = enCξ0 (t).

Therefore,

P {Sn > nε} ≤ e−ntεenCξ0 (t) = e−n(tε−Cξ0 (t)).
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Let Ĉξ0(ε) := supt∈R(tε−Cξ0(t)). This is called the Legendre transform
of Cξ0(t). Thus we have

P {Sn > nε} ≤ e−nĈξ0 (ε).

Since µ = 0 and σ2 > 0, it is straightforward to check that Cξ0(t)

satisfies Cξ0(0) = 0, C ′ξ0(0) = 0 and C ′′ξ0(0) = σ2 > 0. So Cξ0(t) ≈ σ2

2
t2

when |t| � 1. This gives us Ĉξ0(ε) ≈ C0ε
2 > 0 with constant C0 > 0.

This finishes the proof. �

In the rest of this section, we are going to prove the CLT of Lindeberg-
Lévy.

We first recall some definitions.

Definition 1.3 (Convergence in distribution). Xn
d−→ X if µXn → µX

in the weak∗ topology. More precisely,
∫
R gdµXn →

∫
R gdµX , ∀ g ∈

Cc(R).

Remark 1.7. Almost sure convergence implies convergence in prob-
ability, which further implies convergence in distribution. In general,
the inverse directions are not true.

Definition 1.4. The cumulative distribution function (CDF) of a ran-
dom variable X is

FX(t) = P(X ≤ t), FX : R→ [0, 1]

which is non-decreasing. This implies that FX is continuous almost
everywhere.

We list a useful Proposition below without proof.

Proposition 1.2. Xn
d−→ X ⇔ FXn(t) → FX(t) for all t which is a

continuous point of FX .

For convenience, we recall the CLT below

Theorem 1.14 (CLT of Lindeberg-Lévy). Consider an i.i.d. sequence
ξ0, ξ1, . . . , ξn−1, ξn, . . . of real random variables and assume that the
variance σ2 = Eξ2

0 − (Eξ0)2 ∈ (0,∞). Then for all [a, b] ⊂ R,

P
{
Sn − nEξ0

σ
√
n

∈ [a, b]

}
→
∫ b

a

e−
x2

2
dx√
2π

as n→∞.

In other words, with the appropriate scaling we have the convergence
in distribution to the standard normal distribution

Sn − nEξ0

σ
√
n

d−→ N (0, 1) .



STATISTICAL PROPERTIES FOR CERTAIN DYNAMICAL SYSTEMS 11

Proof. Without loss of generality, we can assume that µ = 0 and σ2 = 1
so that we just need to prove

Sn√
n

d−→ N (0, 1) .

The proof follows from Lévy and we will use Fourier analysis.
Define the characteristic function of a random variable X by

ϕX : R→ C, ϕX(t) = E(eitX) =

∫
R
eitxdµX(x).

This is the Fourier transform of µX .
Recall that Lévy’s continuity theorem says the following:

Xn
d−→ X ⇐⇒ ϕXn(t)→ ϕX(t),∀ t ∈ R.

This indicates the phenomenon that µXn converges in the weak∗ topol-
ogy if and only if its Fourier transform µ̂Xn converges for all t.

Moreover, we list some properties of ϕX(t) = E(eitX).

• ϕX(0) = 1,
• If X subjects to N (0, 1), then µX = G(t)dm and ϕX(t) =

Ĝ(t) = e−
t2

2 ,
• ϕcX = ϕX(ct),
• If X, Y are independent, then ϕX+Y = ϕX · ϕY .

By the properties, we get

ϕ Sn√
n
(t) = ϕSn(

t√
n

) =
n−1∏
j=0

ϕξj(
t√
n

) = [ϕξ0(
t√
n

)]n.

By direct computations, we have ϕξ0(0) = 1, ϕ′ξ0(0) = iµ = 0 and

ϕ′′ξ0(0) = −σ2 = −1.
Therefore, by Taylor expansion we obtain

ϕξ0(
t√
n

) = e
−( t√

n
)2/2+o(( t√

n
)3)
.

This proves that

ϕ Sn√
n
(t) = e

− t
2

2
+o( t

3
√
n

)
,

which implies

ϕ Sn√
n
(t)→ e−

t2

2 as n→∞.

The proof is finished by using Lévy’s continuity theorem. �
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2. Stochastic dynamical systems

2.1. Strongly mixing Markov chains. To prove LDT and CLT for
dynamical systems, we have to work with certain types of Markov
chains (which are non-independent processes in general).

Example. LDT for multiplicative random processes.
Given µ ∈ Probc(GL2(R)) and assume some generic condition, for

an i.i.d. sequence {gn}n≥0 and Πn := gn−1 · · · g1g0, we have that ∀ v ∈
R2, v 6= 0

P
{∣∣∣∣ 1n log‖Πnv‖ − L+(µ)

∣∣∣∣ > ε

}
≤ Ce−c(ε)n

for some C <∞ and c(ε) > 0.
In fact, we may relate the multiplicative process to a Markov chain

in the following sense. For simplicity, let us try n = 3 first. For any
v ∈ S1, we have

1

3
log‖g2g1g0v‖ =

1

3
[log
‖g2g1g0v‖
‖g1g0v‖

+ log
‖g1g0v‖
‖g0v‖

+ log‖g0v‖].

Denote Σ = supp(µ) ⊂ GL2(R). Define ϕ : Σ×S1 → R by ϕ(g, v) =
log‖gv‖. Let ω ∈ Ω = ΣN and ω = {gi}i≥0. Define Zv

j : Ω→ Σ× S1 by

Zv
j (ω) = (gj,

gj−1···g0v

‖gj−1···g0v‖), j ≥ 1 and Zv
0 (ω) = (g0, v). Then we obtain

1

3
log‖g2g1g0v‖ =

1

3
[ϕ(Zv

2 (ω)) + ϕ(Zv
1 (ω)) + ϕ(Zv

0 (ω))].

In general,

1

n
log‖Πnv‖ =

1

n

n−1∑
j=0

ϕ(Zv
j (ω)).

where ϕ(g, v) = log‖gv‖ and {Zn}n≥0 is a Markov chain with values in
Σ× S1 and transition (g0, v)→ (g1,

g0v
‖g0v‖) which is precisely the under-

lying fiber projective dynamics of the multiplicative random process.
Therefore, in order to prove LDT and CLT for multiplicative pro-

cesses or other types of dynamical systems, we need to study appropri-
ate Markov chains. Let us begin with a simple model.

Model: subshift of finite type.
Let Σ = {1, · · · , n} be a finite space of symbols and let P = {pij}1≤i,j≤n

be a stochastic matrix. Namely,

∀1 ≤ i ≤ n,

n∑
j=1

pij = 1; pij ≥ 0,∀ 1 ≤ i, j ≤ n.

P can be seen as a transition matrix giving the transition probability
from i to j by pij.
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Let q = (q1, · · · , qn) be a probability vector satisfying qi ≥ 0, ∀1 ≤
i ≤ n and

∑n
i=1 qi = 1.

Definition 2.1. q is P -stationary if qP = q. That is

qj =
n∑
i=1

qipij,∀ 1 ≤ j ≤ n.

Remark 2.1. Every stochastic matrix P has at least one stationary
measure. Moreover, if P is primitive which means that ∃m ∈ Z+ such
that P n

ij > 0,∀ 1 ≤ i, j ≤ n, then ∃! stationary vector q and P n
ij → qj

exponentially fast for any 1 ≤ i ≤ n.

In the following, we are going to define the Markov measure. Let us
begin with some notations.
X+ = ΣN = {{xn}n≥0 : xn ∈ Σ}.
B+ = σ- algebra generated by cylinders of the form

C[i0, · · · , in] = {x ∈ X+ : x0 = i0, · · · , xn = in}.
Given q a probability vector and P a stochastic matrix, define

P(q,P )(C[i0, · · · , in]) := qi0Pi0i1 · · ·Pin−1in .

This is a pre-measure. By Carathéodory’s extension theorem, this pre-
measure has a unique extension to a measure on B+ called Markov
measure.

Let σ : X+ → X+ be the forward shift. Note that if q is P -stationary,
then P(q,P ) is σ-invariant. Therefore, (X+, σ,P(q,P )) is an MPDS called
a subshift of finite type. Moreover, if P is primitive, then (X+, σ,P(q,P ))
is exponentially mixing (hence ergodic).

A Markov chain with values in Σ is a sequence of random variables
{Zn}n≥0 on some probability space (Ω,F ,P), Zn : Ω → Σ satisfying
the Markov property.

P
{
Zn+1 = j

∣∣Zn = in, · · · , Z0 = i0
}

= P
{
Zn+1 = j

∣∣Zn = in
}
.

A Markov chain {Zn}n≥0 is said to have an initial distribution q and
a transition P if
P {Z0 = i} = qi,
P
{
Zn+1 = j

∣∣Zn = i
}

= pij.
By Kolmogorov, there are such Markov chains on (X+,B+,P(q,P )). In

fact, the Markov chain {Zj}j≥0 is precisely the projection Zj : X+ → Σ
defined by Zj(x) = xj for any j ≥ 0.

Now let us consider a more general setting.
Let (M,F) be a measurable space. M is a compact metric space and
F is the Borel σ-algebra on M .



14 A. CAI, P. DUARTE, AND S. KLEIN

Definition 2.2 (Markov kernel). A Markov kernel K(x,E) (which can
be interpreted as the probability of x transitioning to E) is a function
K : M ×F → [0, 1] such that

(1) ∀x ∈M,E 7→ Kx(E) is a probability measure on F ,
(2) ∀E ∈ F , K(·, E) is F -measurable.

Remark 2.2. In practice, we may assume that x 7→ Kx = K(x, ·) ∈
Prob(M) is continuous which in particular impies (2). In other words,
we can think of a Markov kernel as a continuous function K : M →
Prob(M) where we interpret Kx as the probability of transitioning from
x to somewhere.

Definition 2.3 (Stationary measure). µ ∈ Prob(M) is calledK-stationary
if µ =

∫
M
Kxdµ(x) in the sense that µ(E) =

∫
M
Kx(E)dµ(x), ∀E ∈ F .

Now we can define the Markov measure.
Given π ∈ Prob(M) and K a Markov kernel, by Kolmogorov there

exists a unique probability measure Pπ = P(π,K) on X+ = MN, B+ =
σ-algebra generated by the cylinders of the form:

C[A0, · · · , An] =
{
x = {xn}n≥0 ∈ X+ : xj ∈ Aj,∀ 0 ≤ j ≤ n

}
,

where all Aj ∈ F . It is easy to check that

P(π,K)(C[A0, · · · , An]) =

∫
A0

∫
An

· · ·
∫
A1

1dKx0(x1) · · · dKxn−1(xn)dπ(x0).

Note that If ϕ : X+ → R, then Eπ(ϕ) =
∫
X+ ϕdPπ.

A Markov chain {Zn : Ω → M} is a sequence of random variables
with values in M on the probability space (Ω,F ,P) satisfying the fol-
lowing Markov property.

P
{
Zn+1 ∈ E

∣∣Zn, · · · , Z0

}
= P

{
Zn+1 ∈ E

∣∣Zn} .
The Markov chain {Zn}n≥0 is said to have initial distribution π and
transition K if

P {Z0 ∈ E} = π(E),
P
{
Zn+1 ∈ E

∣∣Zn = x
}

= Kx(E).

Example: Ω = X+ = MN, F = B+ = σ-algebra generated by
cylinders. P = P(π,K), Zn : X+ →M,Zn(x) = xn ∀n ≥ 0 .

Note that if π = δx then we write Pδx := Px and Eδx := Ex. Any
K-stationary Markov chain can be realized as the example because Zn :
Ω→M can always be written as Zn = en◦Z, when Z(ω) = {Zn(ω)}n ∈
X+ and en({Zn(ω)}n≥0) = Zn(ω) is the standard projection on to the
n-th coordinates.
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If µ is a K-stationary measure, then a (µ,K) Markov chain {Zn}n≥0

is stationary. More precisely,

P {Z0 ∈ E0, · · · , Zn ∈ En} = P {Zj ∈ E0, · · · , Zj+n ∈ En} , ∀ j, n ≥ 0

where Ej ∈ F is arbitrary. Moreover, the Markov shift (X+, σ) is
Pµ-invariant so (X+, σ,Pµ) is an MPDS.

The powers of the Markov kernel can be derived inductively:

Kn+1(x,E) =

∫
M

K(y, E)dKn
x (y).

Definition 2.4 (Markov system and strongly mixing). If µ is K-
stationary, then (M,K, µ) is called a Markov system. It is strongly
mixing if Kn

x → µ exponentially fast ∀x ∈ M in the weak∗ topology.
More precisely, ∀ϕ ∈ L∞(M),∥∥∥∥∫

M

ϕ(y)dKn
x (y)−

∫
M

ϕ(y)dµ(y)

∥∥∥∥
∞
≤ Cρn ‖ϕ‖∞ (2.1)

holds ∀n ∈ N where C <∞ and ρ ∈ (0, 1).

We may also consider the same concept from a different perspective,
as we shall see below.

Definition 2.5 (Markov operator). Given a Markov system (M,K, µ),
the Markov operator Q = QK : L∞(M)→ L∞(M) defined by

(Qϕ)(x) =

∫
M

ϕ(y)dKx(y).

The n-th iterates are

(Qnϕ)(x0) =

∫
M

· · ·
∫
M

ϕ(xn)dKxn−1(xn) · · · dKx0(x1) =

∫
M

ϕdKn
x0
.

Therefore, (2.1) is equivalent to∥∥∥∥(Qnϕ)(x)−
∫
M

ϕdµ

∥∥∥∥
∞
≤ Cρn ‖ϕ‖∞ , ∀n ∈ N.

2.2. Large deviations for strongly mixing Markov chains. We
first recall some definitions. We begin with

Deterministic dynamical systems (DDS) (M, f).
Let M be a metric space and let f : M → M be a continuous

map. Once the initial state of the system x0 = x is fixed, then xn =
fn(x0), n ≥ 0 are all determined.

A probability measure µ ∈ Prob(M) is f -invariant if f∗µ = µ. Equiv-
alently,

∫
M
δf(x)dµ(x) = µ or ∀ϕ ∈ Cc(M),

∫
M
ϕ(f(x))dµ(x) =

∫
ϕdµ.
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The triple (M, f, µ) is called a measure preserving dynamical system
(as a convention, we omit the Borel σ-algebra on M).

A subset E ⊂ M is called f -invariant if f−1(E) = E. Equivalently,
x ∈ E ⇔ f(x) ∈ E or x ∈ E ⇔ δf(x)(E) = 1. µ is f -ergodic if E
is f -invariant ⇒ µ(E) = 0 or 1. Given an observable ϕ : M → R,
then ϕ(fn(x)) is the observed n-th state of the system which is to be
considered.

Stochastic dynamical system (SDS) (M,K).
Let M be a compact metric space and let K : M → Prob(M), x 7→

Kx be a continuous kernel. If x0 = x is the initial state of the system,
the next state x1 is not determined like in the DDS case by a transition
law f . It is known only with a certain probability: P{x1 ∈ E} =
Kx0(E). The iterates of K are Kn

x =
∫
M
Kn−1
y dKx(y).

µ ∈ Prob(M) is called K-stationary if K ∗ µ = µ in the sense that∫
M
Kxdµ(x) = µ. The triple (M,K, µ) is a Markov system.
E ⊂ M is K-invariant if x ∈ E ⇔ Kx(E) = 1. A K-stationary

measure µ is ergodic if whenever E is K-invariant, we have µ(E) = 0
or 1. If ϕ : M → R is an observable, we will consider

(Qnϕ)(x) =

∫
M

ϕ(y)dKn
x (y) =

∫
M

· · ·
∫
M

ϕ(y)dKxn−1(y) · · · dKx0(x1).

Example 1. Any DDS (M, f) is itself an SDS. That is, M →
Prob(M), x→ δf(x).

Example 2. µ ∈ Probc(GL2(R)),Σ = supp(µ) and {gn}n≥0 is a
sequence of i.i.d. matrices chosen with law µ. We may consider the
kernel K on Σ × S1 as follows K : Σ × S1 → Prob(Σ × S1) such that
K(g0,v̂) = µ× δ ˆg0v. Then (Σ× S1, K) is an SDS.

Let us formally talk about the Kolmogorov extension. Let (M,K, µ)
be a Markov system. Denote X+ = MN = {x = {xn}n≥0 : xn ∈M}. If
π ∈ Prob(M), then ∃!Pπ ∈ Prob(X+) s.t.

Pπ(C[E0]) = π(E0).
Pπ(C[E0, E1]) =

∫
E0

∫
E1

1dKx0(x1)dπ(x0).

If f : X+ → R, then

Eπ(f) =

∫
X+

f(x0, · · · , xn, · · · )dKx0(x1) · · ·Kxn−1(xn) · · · dπ(x0).

When π = δx, we simply write Ex and Px. When π = µ which is
K-stationary, we write Eµ = E and Pµ = P.

We have already defined the Markov operator in Definition 2.5. Here
we consider Q defined on the space of continuous functions on M .
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There are some basic properties of the Markov operator Q. Let us
give two examples.

(1) Q1 = 1,
(2) ‖Qϕ‖∞ ≤ ‖ϕ‖∞,
(3) If ϕ ≥ 0, then Qϕ ≥ 0.

The dual of Q, denoted by Q∗, acts on the space of probabilities
Prob(M). By definition, we have 〈ϕ,Q∗ν〉 = 〈Qϕ, ν〉 for any ϕ ∈
C0(M) and ν ∈ Prob(M). In other words, Q∗ν is the probability on
M s.t. ∫

M

ϕdQ∗ν =

∫
M

Qϕdν, ∀ϕ ∈ C0(M).

Note that µ is K-stationary ⇔ Q∗µ = µ.
In practice, the assumptions in Definition 2.5 is unreasonably strong,

primarily because of ϕ ∈ L∞(M) where L∞ is too big. We are going
to replace it by something weaker.

Let (E, ‖·‖E) be a Banach space where E ⊂ C0(M) is Q-invariant in
the sense that ϕ ∈ E ⇔ Qϕ ∈ E. Moreover, we assume the constant
function 1 ∈ E and the inclusion of E ⊂ C0(M) is continuous, namely
‖ϕ‖∞ ≤ C1 ‖ϕ‖E for some constant C1 < ∞. We also assume that Q
is bounded (or continuous) on (E, ‖·‖E), i.e. ‖Qϕ‖E ≤ C2 ‖ϕ‖E with
C2 <∞.

Definition 2.6 (Weaker version of strongly mixing). The Markov sys-
tem (M,K, µ,E) is strongly mixing if ∀n ∈ Z+ (for n = 0 it holds
trivially), ∥∥∥∥(Qnϕ)(x)−

∫
M

ϕdµ

∥∥∥∥
∞
≤ C ‖ϕ‖E rn, ∀ϕ ∈ E

for some C <∞ and for some mixing rate {rn}n∈Z+ (e.g. rn = ρn with
ρ ∈ (0, 1) or rn = 1

np
with p > 0).

Let {Zn}n≥0 be the K-Markov chain, Zn : X+ →M,Zn(x) = xn, for
ϕ : M → R, we denote

Snϕ = ϕ(Z0) + · · ·ϕ(Zn−1) := ϕ0 + · · ·+ ϕn−1.

Theorem 2.1 (Cai, Duarte, Klein 2022). If (M,K, µ,E) is a strongly
mixing Markov system with mixing rate rn = 1

np
, p > 0, then ∀x0 ∈M

and ∀ ε > 0

Px0

{∣∣∣∣ 1nSnϕ−
∫
M

ϕdµ

∣∣∣∣ > ε

}
. e−c(ε)n

holds for all n ∈ Z+, for all ϕ ∈ E and for some c(ε) = C(C0, L, p)ε
2+ 1

p

where C(C0, L, p) = (3C0L)−(2+ 1
p

) > 0 is a constant depending only on
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the mixing coefficient C0, the mixing exponent p and the upper bound
L of ‖ϕ‖E.

Remark 2.3. For fixed x0, we need C0 norm (we write ‖·‖∞ but we ac-
tually mean ‖·‖0) in the left hand side of the strongly mixing condition.
If we replace Px0 by Pµ since Pµ =

∫
M
Px0dµ(x0), then L∞ norm w.r.t

µ is enough. In any case, this will not affect any of our applications.

Proof. Without loss of generality, we assume Eϕ = 0, otherwise we
consider ϕ − Eϕ. Moreover, it is enough to consider Px0{Snϕ ≥ nε}.
Using Bernstein’s trick, for any t > 0 we have

Px0{Snϕ ≥ nε} = Px0{etSnϕ ≥ etnε} ≤ e−tnεEx0(etSnϕ).

So our goal in the following is to estimate Ex0(etSnϕ) by relating it to
Qn0(ϕ) for some suitable choice of n0 ≤ n.

Note that

etSnϕ =
n−1∏
j=0

etϕj :=
n−1∏
j=0

fj = f0 · · · fn−1, fj > 0,∀ j = 0, · · · , n− 1.

Take n0 ≤ n such that n = n0m+ r. In order to show the strategy, we
may assume r = 0 (which is actually without loss of generality because
the remainder is bounded by some constant). The key trick that we
use is the following. We rewrite f0 · · · fn−1 as

(f0fn0 · · · f(m−1)n0)(f1fn0+1 · · · f(m−1)n0+1) · · · (fn0−1f2n0−1 · · · fmn0−1).

We denote Fj = fjfn0+j · · · f(m−1)n0+j. By using the generalized Hölder
inequality, we have

Ex0(
n−1∏
j=0

fj) = Ex0(F0F1 · · ·Fn0−1) ≤
n0−1∏
k=0

[Ex0(F n0
k )]

1
n0 .

Thus, it is enough to estimate each Ex0(F n0
k ). In fact, we are going to

relate them to some powers of the Markov operator, which we formulate
as the following lemma.

Lemma 2.1. Let ϕ ∈ C0(M), ‖ϕ‖E ≤ L < ∞. Let n ≥ n0 be two
integers and denote by m := b n

n0
c. Then ∀ t > 0,∀x0 ∈M ,

Ex0(etSnϕ) ≤ e2tn0L
∥∥Qn0(etn0ϕ)

∥∥m−1

∞ .

Proof. By assumption we have 0 < fj = f(xj) = etϕ(xj) ≤ etL, ∀j ∈ N.
We rewrite f0 · · · fn−1 as F0F1 · · ·Fn0−1Fn0 where

Fj = fjfn0+j · · · f(m−1)n0+j, 0 ≤ j ≤ n0 − 1
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and
Fn0 = fmn0fmn0+1 · · · fmn0+r−1.

Then Fn0 < etn0L as r < n0. Therefore, we have

Ex0(
n−1∏
j=0

fj) ≤ etn0LEx0(F0 · · ·Fn0−1) ≤ etn0L

n0−1∏
k=0

[Ex0(F n0
k )]

1
n0 .

We will show that Ex0(F n0
k ) ≤ etn0L ‖Qn0(etn0ϕ)‖m−1

∞ , ∀ k = 0, · · · , n0−
1, which implies the result of this lemma.

Note that

F n0
k = fn0

k fn0
n0+k · · · f

n0

(m−1)n0+k = etn0ϕ(xk)etn0ϕ(xn0+k) · · · etn0ϕ(x(m−1)n0+k).

For convenience, we denote G(x) = F n0
k and g(xk) = etn0ϕ(xk) etc. Then

by assumption 0 < g(xk) ≤ etn0L for each k. It remains to estimate the
integral of a function of the type:

G(x) = g(xk)g(xn0+k) · · · g(x(m−1)n0+k), 0 < g ≤ etn0L.

It is an integral w.r.t. a Markov measure, of a function G(x) depends
on a finite and sparse set of coordinates. We will show that

Ex0(G) ≤ etn0L ‖Qn0g‖m−1
∞ .

For simplicity, let us prove by showing an example when k = 1, n0 =
3,m − 1 = 2 and n = 2 × 3 + 1 = 7. The general case, which is
identically the same, is left to the readers.

By direct computation, we have∫
g(x1)g(x4)g(x7)dPx0(x)

=

∫
· · ·
∫
g(x1)g(x4)g(x7)dKx6(x7) · · · dKx0(x1)dδx0(x0)

=

∫
· · ·
∫
g(x1)g(x4)[

∫
g(x7)dKx6(x7)dKx5(x6)dKx4(x5)] · · ·

Note that∫
g(x7)dKx6(x7)dKx5(x6)dKx4(x5) = Q3g(x4) ≤

∥∥Q3g
∥∥
∞ .

Similarly,∫
g(x4)dKx3(x4)dKx2(x3)dKx1(x2) = Q3g(x1) ≤

∥∥Q3g
∥∥
∞ .

Thus

Ex0(g(x1)g(x4)g(x7)) ≤
∥∥Q3g

∥∥2

∞

∫
g(x1)dKx0(x1) ≤ e3tL

∥∥Q3g
∥∥2

∞ .
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This finishes the lemma. �

By the strongly mixing assumption of the theorem, we know that
(we may insert the mixing coefficient C0 into L)

‖Qn0ϕ‖∞ ≤ C0 ‖ϕ‖E
1

np0
≤ L

1

np0
.

By the lemma above, we have ∀n ≥ n0, ∀x0 ∈M ,

Ex0(etSnϕ) ≤ e2tn0L
∥∥Qn0(etn0ϕ)

∥∥m−1

∞ .

However, ϕ ∈ E does not necessarily imply etn0ϕ ∈ E, so if we want
to make use of the strongly mixing condition, we have to do one more
step.

Note that the following inequality holds for all x ∈ R

ex ≤ 1 + x+
x2

2
· e|x|.

Hence we can write

ex = 1 + x+
x2

2
· ψ(x)

for some |ψ(x)| ≤ e|x|. Therefore,

etn0ϕ = 1 + tn0ϕ+
1

2
t2n2

0ϕ
2ψ(tn0ϕ)

where |ψ(tn0ϕ)| ≤ etn0‖ϕ‖∞ ≤ etn0L ≤ 2 if tn0L ≤ 1
2
, namely t ≤ 1

2Ln0
.

Then we have

Qn0(etn0ϕ) = 1 + tn0Q
n0ϕ+

1

2
t2n2

0Q
n0(ϕ2ψ(tn0ϕ))

which shows∥∥Qn0(etn0ϕ)
∥∥
∞ ≤ 1 + tn0L

1

np0
+ t2n2

0L
2 ≤ 1 + 2t2n2

0L
2

if we have tn0L
1
np0
≤ t2n2

0L
2 ⇔ t ≥ 1

Ln1+p
0

. Note that we can choose

t ∈ R satisfying 1

Ln1+p
0

≤ t ≤ 1
2Ln0

since n0 can be chosen sufficiently

large such that np0 ≥ 2.

By the inequality (1 + y)
1
y ≤ e, y > 0, we have∥∥Qn0(etn0ϕ)

∥∥ n
n0
∞ ≤ (1 + 2t2n2

0L
2)

1

2t2n2
0L

2 ·2t
2n2

0L
2· n
n0 ≤ e2t2n0L2n.

By the lemma above, we have

Ex0(etSnϕ) ≤ e2tn0Le2t2n0L2n ≤ 4e2t2n0L2n.



STATISTICAL PROPERTIES FOR CERTAIN DYNAMICAL SYSTEMS 21

By Bernstein’s trick, we have

Px0{Snϕ ≥ nε} ≤ e−tnεEx0(etSnϕ) ≤ 4e−tnεe2t2n0L2n.

It remains to estimate −tε+ 2t2n0L
2 with some proper choice. For our

purpose, we can choose n0 = (3L
ε

)
1
p and t = 1

Ln1+p
0

such that −tε +

2t2n0L
2 < −C(L, p)ε2+ 1

p := −c(ε) where C(L, p) = (3L)−(2+ 1
p

) > 0 is
a constant depending only on L, p and the strongly mixing coefficient
C0 as we already insert it into L.

This finishes the whole proof of the theorem. �

We now recall an abstract central limit theorem of Gordin and Livšic
(see [4] and [5]).

Theorem 2.2 (Gordin-Livšic). Let (M,K, ν) be an ergodic Markov
system, let ϕ ∈ L2(ν) with

∫
ϕdν = 0 and assume that

∞∑
n=0

‖Qnϕ‖2 <∞.

Denoting ψ :=
∑∞

n=0Qnϕ, we have that ψ ∈ L2(ν) and ϕ = ψ−Qψ.

If σ2(ϕ) := ‖ψ‖2
2 − ‖Qψ‖

2
2 > 0 then the following CLT holds:

Snϕ

σ(ϕ)
√
n

d−→ N (0, 1) .

Recall that a Markov system (M,K, ν) is ergodic if the measure ν is
an extremal point in the convex space of K-stationary probability mea-
sures on M . This is equivalent to the ergodicity of the shift map on the
product space X+ relative to the Markov measure P = Pν . Evidently, if
K admits a unique stationary measure, then the corresponding Markov
system is ergodic.

As a consequence of the above result we obtain the following.

Proposition 2.2. Let (M,K, ν,E) be a strongly mixing Markov system
(relative to the uniform norm) with mixing rate rn = 1

np
with p > 1,

where E is a dense subset of Cb(M).
Assume that for any open set U ⊂ M with ν(U) > 0 there exists

φ ∈ E such that 0 ≤ φ ≤ 1U and

∫
M

φdν > 0. For any observable

ϕ ∈ E, if ϕ is not ν-a.e. constant then Theorem 2.2 is applicable and
the CLT holds.

Proof. The strong mixing condition and the density of E in Cb(M)
imply the uniqueness of the K-stationary measure, which in turn imply
the ergodicity of the Markov system. Indeed, if ν̃ is a K-stationary
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measure, then for any ϕ ∈ Cb(M) we have
∫
Qnϕdν̃ =

∫
ϕdν̃ for all

n ∈ N. By strong mixing, for any ϕ ∈ E we have that Qnϕ →
∫
ϕdν

uniformly. Integrating with respect to ν̃ we conclude that
∫
ϕdν̃ =∫

ϕdν for all ϕ ∈ E, so for all ϕ ∈ Cb(M), which shows that ν̃ = ν.
Let ϕ ∈ E be a non ν-a.e. constant observable. We may of course

assume that
∫
ϕdν = 0, otherwise we consider ϕ−

∫
ϕdν.

Let ψ :=
∑∞

n=0Qnϕ. Since ϕ ∈ Cb(M), the strong mixing assump-
tion on Q implies (via the Weierstrass M -test) that ψ ∈ Cb(M) as well.
It remains to show that σ2(ϕ) > 0 which ensures the applicability of
Theorem 2.2.

Assume by contradiction that σ2(ϕ) = ‖ψ‖2
2 − ‖Qψ‖

2
2 = 0. Then

0 ≤
∫

((Qψ)(x)− ψ(y))2 dKx(y) dν(x)

=

∫ {
((Qψ)(x))2 + ψ(y)2 − 2ψ(y) (Qψ)(x)

}
dKx(y) dν(x)

=

∫ {
ψ(y)2 − ((Qψ)(x))2

}
dKx(y) dν(x)

=

∫
ψ(y)2 dKx(y) dν(x)−

∫
((Qψ)(x))2 dν(x)

= ‖ψ‖2
2 − ‖Qψ‖

2
2 = 0 (since ν is K − stationary).

Therefore, ψ(y) = Qψ(x) for ν-a.e. x ∈ M and Kx-a.e. y ∈ M . By
induction we obtain that for all n ≥ 1,

ψ(y) = (Qnψ)(x) for ν-a.e. x ∈M and for Kn
x -a.e. y ∈M,

which implies that for all n ≥ 1 and for ν-a.e. x ∈ M , the function ψ
is Kn

x -a.e. constant. Let us show that in fact ψ is ν-a.e. constant.
If ψ is not ν-a.e constant, then there exist two disjoint open subsets

U1 and U2 of M such that ν(U1), ν(U2) > 0 and ψ|U1 < ψ|U2 . By the
assumption, there are two observables φ1, φ2 ∈ E such that 0 ≤ φi ≤
1Ui and

∫
φi dν > 0 for i = 1, 2. Moreover, for all x ∈M and n ≥ 1,

Kn
x (Ui) = (Qn1Ui)(x) ≥ (Qnφi)(x)→

∫
φidν > 0,

where the above convergence as n→∞ is uniform in x ∈M .
Thus for a large enough integer n and for all x ∈M , both sets U1 and

U2 have positive Kn
x measure. However, ψ|U1 < ψ|U2 , which contradicts

the fact that ψ is Kn
x -a.e. constant for ν-a.e. x ∈M .

We conclude that ψ is ν-a.e constant. Since ν is K-stationary it
follows that ϕ = ψ −Qψ = 0 ν-a.e, which is a contradiction. �
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We note that Theorem 2.2 holds not only for the probability P = Pν ,
but also for the probability Px0 corresponding to the Markov chain
starting from ν-a.e. point x0 ∈ M (see the comments after Definition
1.1 in [5]). Then Proposition 2.2 and all of its consequences, also hold
w.r.t. these measures.

In the next subsections, we will introduce examples of dynamical
systems that fit this abstract framework.

2.3. Applications of the abstract LDT. We will mainly study two
certain skew-products.

Mixed random-quasiperiodic systems. Let T = R/Z be the
one dimensional torus. Assume α /∈ Q, let τα : T → T be the torus
translation by α such that τα(θ) = θ + α mod 1. Therefore, (T, τα,m)
is an ergodic MPDS.

Remark 2.4. The (Markov) Koopman operator of this system is not
strongly mixing, so the torus translation cannot be studied in this
abstract framework. This is simply because Qnϕ(θ) = ϕ(θ + nα) 9∫
ϕdµ as n→∞ for any non-constant ϕ ∈ C0(T).

Therefore, instead of torus translation, we are going to consider an
iterated functions system (IFS) of rotations.

Let µ ∈ Prob(T), denote {αn}n≥0 an i.i.d. sequence of translations
with distribution µ. We consider the iterates

θ 7→ θ + α0 7→ θ + α0 + α1 7→ · · ·
Then given ϕ : T→ R an observable, we may consider

Qϕ(θ) =

∫
ϕ(θ + α)dµ(α).

Obviously, the corresponding kernel K : T→ Prob(T) is Kθ = µ ∗ δθ.
It turns out that the system (T, K,m) is strongly mixing with a

certain rate rn having either polynomial or exponential decay, provided
µ satisfies some general arithmetic properties (to be defined later) and
ϕ is Hölder continuous. The proof will use some Fourier Analysis.

Note that the observable ϕ above only depends on one variable. In
fact, we will consider a more complex system which allows ϕ to depend
on infinite coordinates.

Regard Σ := T as the space of symbols with the measure µ. Let X :=
ΣZ and consider the shift system (X, σ, µZ) where σ is the two sided
Bernoulli shift. Then the skew product dynamical system is defined by

f : X × T→ X × T, f(α, θ) = (σα, θ + α0).

The n-iterates are fn(α, θ) = (σnα, θ + α0 + · · ·+ αn−1).
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The triple (X×T, f, µZ×m) is called a mixed random-quasiperiodic
system. Under certain general assumptions on µ, it is ergodic and it
satisfies LDT and CLT for certain types of observables.

Certain types of linear cocycles. Examples are Random, Markov,
Fiber-bunched and Mixed cocycles.

We first recall the definition of linear cocycles. For more details, see
[Viana] and [DK-CBM].

Let (X, f, µ) be an ergodic MPDS. A linear cocycle over (X, f, µ) is
a skew-product map

F : X × R2 → X × R2, F (x, v) = (f(x), A(x)v),

where A : X → GL2(R) is a measurable function. We ususally call f
the base dynamics and A the fiber dynamics. We may also consider
the projective cocycle.

F̂ : X × P→ X × P, F̂ (x, v̂) = (f(x), Â(x)v).

The n-th iterates of the cocycle are F n(x, v) = (fn(x), An(x)v) where

An(x) = A(fn−1(x)) · · ·A(f(x))A(x)

are called transfer matrices in Mathematical Physics.
We will always assume a mild integrability condition:∫

X

log ‖A(x)‖ dµ(x) <∞.

Denote by ϕn(x) := log ‖An(x)‖, then the sequence {ϕn}n≥0 is f -
subadditive in the sense that

ϕn+m ≤ ϕn ◦ fm + ϕm, ∀m,n ∈ N
By Kingman’s subadditive ergodic theorem,

1

n
ϕn → L+, µ-a.e.

That is

lim
n→∞

1

n
log ‖An(x)‖ = L+(A), µ-a.e.x ∈ X

where L+(A) is called the maximal Lyapunov exponent of A. Moreover,
for µ-a.e. x ∈ X,

lim
n→∞

1

n
log ‖An(x)‖ = lim

n→∞

∫
1

n
log ‖An‖ dµ = inf

n≥1

∫
1

n
log ‖An‖ dµ.

By a similar argument, we have

lim
n→∞

1

n
log
∥∥An(x)−1

∥∥−1
= L−(A), µ-a.e.x ∈ X.
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Note that ∀ g ∈ GL2(R), ‖g−1‖−1 ≤ ‖g‖, so L−(A) ≤ L+(A).
We recall the Oseledets multiplicative ergodic theorem.

Theorem 2.3. Let FA : X × R2 → X × R2 be a µ-integrable cocycle
given by A : X → GL2(R) over an ergodic MPDS (X, f, µ), then

(1) If L+(A) = L−(A), then ∀ v ∈ R2 non-zero,

lim
n→∞

1

n
log ‖An(x)v‖ = L+(A), µ-a.e.x ∈ X.

(2) If L+(A) > L−(A), then there is a measurable map

x 7→ Vx ⊂ R2

where Vx is a one dimensional subspace of R2, such that

A(x)Vx = Vf(x)

i.e. Vx is an F - invariant section. Moreover, if v /∈ Vx, then

lim
n→∞

1

n
log ‖An(x)v‖ = L−(A).

Otherwise, if v ∈ Vx, then

lim
n→∞

1

n
log ‖An(x)v‖ = L+(A).

Moreover, if f is invertible then there exists a measurable splitting
of the fiber: for µ-almost every x ∈ X, R2 = E+

x ⊕ E−x such that

(1) A(x)E±x = E±f(x).

(2) limn→∞
1
n

log ‖An(x)v‖ = L±(A), v ∈ E±x , v 6= 0.

(3) limn→∞
1
n

log
∣∣∣sin∠(E+

fn(x), E
−
fn(x))

∣∣∣ = 0

Examples of linear cocycles are quasi-periodic cocycles over a torus
translation τα (which does not fit our framework) and random cocycles
over a Bernoulli shift σ.

3. Large deviations for random linear cocycles

We begin with the definition of a random linear cocycle.
Setup. Let (Σ, µ) be a probability space (Σ is always assumed to be

a compact metric space throughout this section). Denote X := ΣZ and
let σ be the two sided (Bernoulli) shift. µZ is the product measure on
the infinite product space X. The triple (X, σ, µZ) is called a Bernoulli
shift. This is the base dynamics.

Let A : X → GL2(R) be a continuous random cocycle. More-
over, assume that A is locally constant, namely, A(ω) = A(ω0) where
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ω = {ωn}n∈Z. Given the Bernoulli shift, A determines a random linear
cocycle

F = FA : X × R2 → X × R2, F (ω, v) = (σω,A(ω0)v).

The n-th iterates of the cocycle are

F n(ω, v) = (σnω,An(ω)v)

where An(ω) = A(ωn−1) · · ·A(ω1)A(ω0). As before, we may also con-

sider the projective cocycle F̂ that is similarly defined.
We say that F satisfies a fiber LDT (or A satisfies an LDT) if ∀ v 6=

0, v ∈ R2,∀ ε > 0

µZ
{
ω ∈ X :

∣∣∣∣ 1n log ‖An(ω)v‖ − L+(A)

∣∣∣∣ > ε

}
< e−c(ε)n

for all n ≥ n(ε, A) and for some c(ε) > 0.
We will prove this LDT under certain “generic assumptions” on A

and µ. Under the same assumptions, we will also get a CLT:

log ‖An(ω)v‖ − nL+(A)

σ
√
n

d−→ N (0, 1) .

Remark 3.1. Note that since A : Σ → GL2(R) is continuous, then
ν = A∗µ ∈ Probc(GL2(R)). Therefore, we can start with a compactly
supported probability measure ν in Probc(GL2(R)) and consider the
multiplicative process associated to an i.i.d. sequence of random ma-
trices {gn}n∈Z, gn ∈ GL2(R) with distribution ν. These two settings
are essentially equivalent.

Generic assumptions. Let (Σ, µ) be a probability space, A ∈ Σ→
GL2(R).

Definition 3.1. A line l ⊂ R2 is A-invariant if A(x)l = l for µ-a.e.
x ∈ Σ.

Let HA be the group generated by the support of A∗µ. Note that if
l is A-invariant, then l is HA-invariant.

Definition 3.2. A cocycle A is called irreducible if there is no A-
invariant line.

Definition 3.3. A cocycle A is called strongly irreducible if there is
no finite union of lines which is A-invariant. Namely, ∀n ∈ Z+, there
exist no lines {lj}1≤j≤n such that A(x)

⋃n
j=1 lj =

⋃n
j=1 lj for a.e. x ∈ Σ.

Definition 3.4. A (or A∗µ) is called non-compact if there exists a
sequence of matrices {hn}n≥1 ⊂ HA such that ‖hn‖ · ‖h−1

n ‖ → ∞.
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We introduce a profound theorem of Furstenberg.

Theorem 3.1 (Furstenberg’s Theorem). If A is non-compact and strongly
irreducible, then L+(A) > L−(A).

Example 1. Triangular matrices A : Σ→ GL2(R):

A(x) =

(
a(x) b(x)

0 c(x)

)
is reducible because the line l of the direction (1, 0) is A-invariant.

Example 2. Random Schrödinger cocycles. Let Σ ⊂ R be compact
and µ ∈ Prob(Σ). Then S : Σ→ GL2(R) is defined by

S(a) =

(
a −1
1 0

)
∈ SL2(R).

Assume that #supp(µ) ≥ 2 (µ is not a single Dirac), then S is non-
compact and strongly irreducible. We leave the proof to the readers.
Hint: play with S(a)S(b)−1 and S(a)−1S(b), show that (1, 0)∪ (0, 1) is
the only potential candidate for S-invariance and prove it is actually
not S-invariant. Thus strongly irreducible condition is fulfilled. As for
non-compactness, take n-th power of either S(a)S(b)−1 or S(a)−1S(b).

Let l ⊂ R2 be an A-invariant line, namely A(x)l = l for µ-a.e. x ∈ Σ,
then we can restrict A to l. We denote it by A|l. Fix a unit vector v ∈ l,
then A(ω)v = λ(ω)v for some λ : X → R which is in fact also locally
constant. Let An(ω)v = A(σn−1ω) · · ·A(σω)A(ω)v, then by Birkhoff
ergodic theorem

1

n
log ‖An(ω)v‖ =

1

n

n−1∑
j=0

log
∣∣λ(σjω)

∣∣ =

∫
X

log |λ(ω)| dµZ(ω) = L(A|l).

Definition 3.5. A is called quasi-irreducible if either there is no A-
invariant line or L(A|l) = L+(A).

We will prove the following theorem.

Theorem 3.2 (Le-Page, Duarte-Klein). If A is quasi-irreducible and
L+(A) > L−(A), then A satisfies LDT: ∀ ε > 0

µZ
{
ω ∈ X :

∣∣∣∣ 1n log ‖An(ω)v‖ − L+(A)

∣∣∣∣ > ε

}
< e−c(ε)n

holds ∀ v 6= 0, v ∈ R2, ∀n ≥ n(ε, A) and for some c(ε) > 0.

General strategy for the proof. Consider the projective cocycle

F̂A : X × P→ X × P, F̂A(ω, v̂) = (σω, Â(ω0)v̂).
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The corresponding Markov chain on M := Σ× P is

(ω0, v̂)→ (ω1, Â(ω0)v̂)→ (ω2, Â(ω1)Â(ω0)v̂)→ · · ·

where we denote (ωn, Â(ωn−1) · · · Â(ω0)v̂) =: xn.
The associated SDS is

K̄ : Σ× P→ Prob(Σ× P), K̄(ω0,v̂) = µ× δÂ(ω0)v̂.

This kernel K̄ defines a Markov operator

Q̄ : C0(Σ× P)→ C0(Σ× P),

Q̄ϕ(ω0, v̂) =

∫
Σ

ϕ(ω1, Â(ω0)v̂)dµ(ω1).

We will consider a special observable ξ = ξA : Σ× P→ R such that

ξA(ω0, v̂) = log ‖A(ω0)v‖

where v is a unit representative of v̂.
Recall that m ∈ Prob(Σ×P) is K̄-stationary if and only if Q̄∗m = m

where Q∗ is the dual of Q. Then by Furstenberg’s Formula, we have

L+(A) = max
m∈ProbK̄(Σ×P)

{∫
Σ×P

ξA(ω0, v̂)dm(ω0, v̂)

}
Let x = {xn}n≥0 ∈ MN, then if we start with an initial v̂ which is a

unit vector. we have

SnξA(x) = ξA(x0) + ξA(x1) + · · ·+ ξA(xn−1) = log ‖An(ω)v‖ .

Thus
1

n
SnξA(x) =

1

n
log ‖An(ω)v‖ . (3.1)

Note that if A is quasi-irreducible, then the l.h.s. will converge to∫
ξAdm = L+(A) by Birkhoff, so intuitively the LDT should follow.

3.1. Stationary measures. Equation (3.1) shows that in order to
prove fiber-LDT for A, it would be enough to prove the corresponding
Markov chain with observable ξA. For this purpose, it would be enough
to show (because of the abstract LDT) that the Markov operator Q̄
is strongly mixing on some appropriate space (E, ‖·‖E) which contains
the special observable ξA.

A priori, this space will be Hα(Σ× P) of α-Hölder continuous func-
tions in P with some appropriate norm with some α > 0. On this
space, Q̄ will be shown to be quasi-compact and simple in which case
rn = σn with σ ∈ (0, 1). In fact, it will be convenient to work with a
simpler kernel and the associated Markov operator.
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Let Q : C(P)→ C(P) such that

Qψ(v̂) =

∫
ψ(Â(ω0)v̂)dµ(ω0).

Then Q is the Markov operator corresponding to the kernel K : P →
Prob(P) :

Kv̂ =

∫
δÂ(ω0)v̂dµ(ω0).

Consider the projection Π : C(Σ× P)→ C(P) defined by

Πϕ(v̂) =

∫
ϕ(ω0, v̂)dµ(ω0).

Lemma 3.1. The following diagram is commutative.

C0(Σ× P)
Q̄−−−→ C0(Σ× P)

Π

y yΠ

C0(P)
Q−−−→ C0(P)

Namely, Π ◦ Q̄ = Q ◦ Π.

Proof. A simple calculation. �

Lemma 3.2. ∀ϕ ∈ C0(Σ× P), ∀n ≥ 1, we have

Q̄nϕ(ω0, v̂) = Qn−1(Πϕ)(Â(ω0)v̂).

This shows that in order to prove that Q̄ is strongly mixing on E, it
is enough to show that Q is strongly mixing on Π(E).

Proof.

Q̄nϕ(ω0, v̂) =

∫
Σn
ϕ(ωn, Â

n(ω)v̂)dµ(ωn) · · · dµ(ω1)

=

∫
Σn
ϕ(ωn, Â(ωn−1) · · · Â(ω0)v̂)dµ(ωn) · · · dµ(ω1).

On the other hand, for any ψ ∈ C(P) and p̂ ∈ P, we have

Qn−1ψ(p̂) =

∫
Σn−1

ψ(Â(ωn−1) · · · Â(ω1)p̂)dµ(ωn−1) · · · dµ(ω1). (3.2)

If we take p̂ = Â(ω0)v̂ and ψ = Πϕ, then (3.2) equals to∫
Σn−1

∫
Σ

ϕ(ωn, Â(ωn−1) · · · Â(ω0)v̂)dµ(ωn−1) · · · dµ(ω1).

This finished the proof. �
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Recall that given a Markov kernel K : M → Prob(M), a measure
η ∈ Prob(M) is called K-stationary if Q∗η = η where Q∗ is the dual
of the Markov operator Q associated with K. In this case, we will
denote η ∈ ProbK(M). In fact, there are several equivalent definitions
as follows:

(1) Q∗η = η
(2) ∀ϕ ∈ C0(M),

∫
M
Qϕdη =

∫
M
ϕdη.

(3) ∀ϕ ∈ C0(M),
∫
M

∫
M
ϕ(y)dKx(y)dη(x) =

∫
M
ϕdη.

(4) K ∗ η = η where K ∗ η =
∫
Kxdη(x).

Proposition 3.3. Given η ∈ Prob(P), the following are equivalent
(TFAE):

(1) η is K-stationary.
(2) µ× η is K̄-stationary.

(3) µN×η is F̂+-invariant where F̂+ : X+×P→ X+×P. Namely,

(X+ × P, F̂+, µN × η) is an MPDS.

Proof. We will first prove (1)⇔ (2). It is enough to show that K ∗ η =
η ⇔ K̄ ∗ (µ× η) = µ× η. In fact, we will show that

K̄ ∗ (µ× η) = µ× (K ∗ η). (3.3)

This will conclude the proof because if K ∗η = η, then K̄ ∗ (µ×η) =
µ × η. If K̄ ∗ (µ × η) = µ × η, then µ × (K ∗ η) = µ × η which gives
K ∗ η = η.

Note that (3.3) is equivalent to saying that: ∀ϕ ∈ C0(Σ× P),∫
ϕd[K̄ ∗ (µ× η)] =

∫
ϕdµd(K ∗ η).

We first look at the left hand side. By the definition of convolution,

K̄ ∗ (µ× η) =

∫
K̄(ω0,v̂)dµ(ω0)dη(v̂) =

∫
µ× δÂ(ω0)v̂dµ(ω0)dη(v̂).

Thus we have∫
ϕd[K̄ ∗ (µ× η)] =

∫
ϕ(ω1, Â(ω0)v̂)dµ(ω1)dµ(ω0)dη(v̂).

Now let us focus on the r.h.s.

K ∗ η =

∫
Kv̂dη(v̂) =

∫ ∫
δÂ(ω0)v̂dµ(ω0)dη(v̂).

Thus we have∫
ϕdµd(K ∗ η) =

∫ ∫ ∫
ϕ(ω1, Â(ω0)v̂)dµ(ω1)dµ(ω0)dη(v̂).

This proves (1)⇔ (2).
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In the following, we are going to prove (1)⇔ (3). Recall that µN× η
is F̂+-invariant if and only if ∀ϕ ∈ C0(X+ × P),∫

ϕdµN × η =

∫
ϕ ◦ F̂+dµN × η.

More precisely,∫
ϕ(ω, v̂)dµN(ω0, ω1, · · · )dη(v̂) =

∫
ϕ(σω, Â(ω0)v̂)dµN(ω1, ω2, · · · )dη(v̂).

If we denote ψ :=
∫
ϕ(ω, v̂)dµN(ω) ∈ C0(P) which is arbitrary since ϕ

is arbitrary, then the l.h.s. becomes
∫
ψdη and the r.h.s. becomes∫

ϕ(σω, Â(ω0)v̂)dµN(ω1, ω2, · · · )dη(v̂) =

∫ ∫
ψ(Â(ω0)v̂)dµ(ω0)dη(v̂)

=

∫
Qψ(v̂)dη(v̂).

Thus it is clear that (1)⇔ (3). This finishes the proof. �

Before we proceed, we recall some convex analysis concepts.
Let X be a topological vector space that is Hausdorff and locally

convex. Given D ⊂ X, p ∈ D is an extreme point of D if it is not
between any two different points in D. That is, there are no x, y ∈ D
with x 6= y such that for some t ∈ (0, 1),

p = tx+ (1− t)y.

Theorem 3.3 (Krein-Milman). If D ⊂ X is compacy, convex and non-
empty, then D has at least one extreme point, i.e. extreme(D) 6= ∅.
Moreover, the closed convex hull of extreme(D) is D.

Here the closed convex hull Co(S) is the smallest closed convex set
containing S.

Example 1. Let M be a compact metric space. D := Prob(M)
with the weak∗ topology is compact convex and non-empty. So Krein-
Milman applies. In this case, X is the space of signed measures which
is metrizable with the weak∗ topology.

Example 2. Under the same settings as in Ex 1, letD := ProbK(M)
which is closed. Thus D is compact, convex and non-empty. So Krein-
Milman also applies.

Stationary measures, continuation.
To be more precise, let us rewrite the three levels of objects.

(1) DDS, projective linear cocycle:

F̂+ : X+ × P→ X+ × P, F̂+(ω, v̂) = (σω, Â(ω0)v̂).
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(2) SDS on Σ× P:

K̄(ω,v̂) = µ× δÂ(ω0)v̂,

with the corresponding Markov operator Q̄:

Q̄ : C0(Σ× P)→ C0(Σ× P),

Q̄ϕ(ω0, v̂) =

∫
Σ

ϕ(ω1, Â(ω0)v̂)dµ(ω1).

K̄-Markov chain {Zn}n≥0 where Zn : X+ × P → Σ × P such
that

Z0(ω, v̂) = (ω0, v̂), Zn(ω, v̂) = (ωn, Â
n(ω)v̂)

with initial distribution µ × δv̂ (non-stationary case) or µ × η
(stationary case).

(3) SDS on P:

Kv̂ =

∫
Σ

δÂ(ω0)v̂dµ(ω0),

with the corresponding Markov operator Q:

Q : C0(P)→ C0(P), Qϕ(v̂) =

∫
P
ϕ(Â(ω0)v̂)dµ(ω0).

We will mainly consider the special observable on Σ× P:

ξ̄ : Σ× P→ R, ξ̄(ω0, v̂) = log ‖A(ω0)v‖

where v ∈ v̂ with ‖v‖ = 1.
The corresponding observable on P is ξ = Πξ̄ : P → R where

Πϕ(v̂) =
∫

Σ
ϕ(ω0, v̂)dµ(ω0) for any ϕ ∈ C0(Σ× P).

The corresponding observable on X+ × P is

Φ : X+ × P→ R, Φ(ω, v̂) = ξ̄(ω0, v̂).

Remark 3.2. We emphasize that all the places where ϕ, ψ ∈ C0 above
can be replaced by ϕ, ψ ∈ L∞ simply because we can define the Markov
operator not only on the continuous function space, but also on the
space of essentially bounded functions.

In the following, we will prove that η is an extremal point of ProbK(P)

if and only if µN × η is F̂+-invariant.

Definition 3.6. An observable ϕ ∈ L∞(P) is called η-stationary if
Qϕ(v̂) = ϕ(v̂) for η-a.e. v̂ ∈ P. A Borel set E ⊂ P is called η-stationary

if 1E is η-stationary. Or equivalently, η-a.e. v̂ ∈ E ⇔ Â(ω0)v̂ ∈ E for
µ-a.e. ω0 ∈ Σ.
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The equivalence statement is due to the condition:

Q1E(v̂) =

∫
Σ

1E(Â(ω0)v̂)dµ(ω0) = 1E(v̂), η-a.e. v̂ ∈ P.

Proposition 3.4. Let η ∈ ProbK(P), the following are equivalent:

(1) η is an extremal point of ProbK(P).
(2) If F ⊂ P is η-stationary, then η(F ) = 0 or 1.
(3) If ϕ ∈ L∞(P) is η-stationary, then ϕ ≡ const, η-a.e.

(4) (X+ × P, F̂+, µN × η) is an ergodic MPDS.

Proof. We prove by this order: (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1).
(1)⇒ (2). Assume by contradiction the existence of F ⊂ P which is

η-stationary with t = η(F ) ∈ (0, 1). The same holds for F c. Namely,
F c is also η-stationary and η(F c) = 1− t ∈ (0, 1).

Let

ηF ∈ Prob(P), ηF (E) =
η(E ∩ F )

η(F )

which is the conditional probability. Then by the Law of total proba-
bility,

η = tηF + (1− t)ηF c .

Moreover, since ηF (F ) = 1 and ηF c(F ) = 0, we have ηF 6= ηF c .
If we can show that ηF ∈ ProbK(P)( then so does ηF c), we will

get a contradiction because η is assumed to be an extremal point of
ProbK(P).
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Let ϕ ∈ L∞(P), direct computation shows∫
P
QϕdηF =

1

η(F )

∫
F

Qϕdη

=
1

η(F )

∫
F

∫
Σ

ϕ(Â(ω0)v̂)dµ(ω0)dη(v̂)

=
1

η(F )

∫
P

∫
Σ

ϕ(Â(ω0)v̂)1F (v̂)dµ(ω0)dη(v̂)

=
1

η(F )

∫
P

∫
Σ

ϕ(Â(ω0)v̂)1F (Â(ω0)v̂)dµ(ω0)dη(v̂)

=
1

η(F )

∫
P

∫
Σ

(ϕ|F )(Â(ω0)v̂)dµ(ω0)dη(v̂)

=
1

η(F )

∫
P

∫
Σ

(ϕ|F )(v̂)dµ(ω0)dη(v̂)

=
1

η(F )

∫
P
Q(ϕ|F )(v̂)dη(v̂)

=
1

η(F )

∫
P
(ϕ|F )(v̂)dη(v̂)

=
1

η(F )

∫
F

ϕ(v̂)dη(v̂)

=

∫
P
ϕdηF .

This proves that ηF is K-stationary, so is ηF c .This contradicts that η
is extremal, so (2) holds.

(2)⇒ (3). Let ϕ ∈ L∞(P) be η-stationary. We will use the following
useful fact from measure theory.

Exercise. ϕ is constant η-a.e. iff the sub-level sets {ϕ > c} = {v̂ :
ϕ(v̂) < c} have η measure either 1 or 0, ∀ c ∈ R.

Fix c ∈ R, let E = {v̂ : ϕ(v̂) < c}. We will show that 1E is η-
stationary. Namely, E is η-stationary and by (2) we obtain that η(E)
is either 0 or 1. Since c is arbitrary, by the Exercise above, we get ϕ is
constant η-a.e.

Let S := {ϕ ∈ L∞(P) : ϕ is η-stationary}. We will show that 1E ∈ S.
We list two properties of S below:

(1) S is a linear space,
(2) S is a lattice.

Item (1) is obvious. For Item (2), being a lattice means

• φ ∈ S⇒ |ϕ| ∈ S.
• If ϕ, ψ ∈ S, then min{ϕ, ψ},max{ϕ, ψ} ∈ S.
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We prove the first item. Since η ∈ ProbK(P), we have

∫
P
Q |ϕ| − |ϕ| dη =

∫
P
Q |ϕ| dη −

∫
P
|ϕ| dη = 0.

ϕ ∈ S⇒ Qϕ = ϕ, η-a.e. This implies

|ϕ(v̂)| = |Qϕ(v̂)|

=

∣∣∣∣∫ ϕ(Â(ω0)v̂)dµ(ω0)

∣∣∣∣
≤
∫ ∣∣∣ϕ(Â(ω0)v̂)

∣∣∣ dµ(ω0)

= Q |ϕ| (v̂).

That is, |ϕ| ≤ Q |ϕ|, η-a.e. Therefore, |ϕ| = Q |ϕ|, η-a.e. which shows
|ϕ| ∈ S.

The second item follows simply from the first item and the linearity
because

min{ϕ, ψ} =
ϕ+ ψ

2
− |ϕ− ψ|

2
,

max{ϕ, ψ} =
ϕ+ ψ

2
+
|ϕ− ψ|

2
.

Now, let ϕn(v̂) = min {1, n · {c− ϕ(v̂), 0}} . Clearly, ϕn → 1E as
n→∞. Moreover, by the properties of S and the definition of ϕn, we
have ϕn ∈ S. Thus Qϕn = ϕn, η-a.e. Then we have Qϕn = ϕn → 1E
and also Qϕn → Q1E, η-a.e. Finally, by the uniqueness of limit, we
have Q1E = 1E, η-a.e. which proves 1E ∈ S. This gives (3).

(3) ⇒ (4). To prove that µN × η is F̂+-ergodic, it is equivalent to

showing that if ψ ∈ L∞(X+×P) satisfies ψ ◦ F̂+ = ψ, µN×η-a.e., then
ψ ≡ const, µN × η-a.e.

Let ϕ : P → R, ϕ(v̂) =
∫
X+ ψ(ω, v̂)dµN(ω). We will first show that

ϕ ≡ const, η-a.e. For this, it is enough to show that ϕ is η-stationary
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because of (3). By direct computation,

Qϕ(v̂) =

∫
Σ

ϕ(Â(ω0)v̂)dµ(ω0)

=

∫
Σ

∫
X+

Ψ(ω′, Â(ω0)v̂)dµN(ω′)dµ(ω0)

=

∫
X+

ψ(σω, Â(ω0)v̂)dµN(ω)

=

∫
X+

ψ ◦ F̂+(ω, v̂)dµN(ω)

=

∫
X+

ψ(ω, v̂)dµN(ω)

= ϕ(v̂)

for η-a.e. v̂ ∈ P.
It is left to show that ψ does not depend on ω = (ω0, · · · , ωk−1, · · · ).

Fix k ≥ 1, it is enough to show ψ does not depend on (ω0, · · · , ωk−1).
By assumption, we have

ψ = ψ ◦ F̂+ = · · · = ψ ◦ (F̂+)k, µN × η -a.e.

Namely,

ψ(ω, v̂) = ψ(σkω, Âk(ω)v̂).

Therefore, we have∫
X+

ψ(ω, v̂)dµN(ωk, ωk+1, · · · ) =

∫
X+

ψ(σkω, Âk(ω)v̂)dµN(ωk, ωk+1, · · · )

= ϕ(Âk(ω)v̂)

= const

for η-a.e. v̂ ∈ P.
So ψ is constant in (ω0, · · · , ωk−1), ∀ k ≥ 1. Thus ψ is constant

in ω (one can also consider in terms of conditional expectation w.r.t.
sub-algebras generated by cylinders). This proves (4).

(4) ⇒ (1). Assume by contradiction that η is not extremal, then
∃t ∈ (0, 1), η1 6= η2 ∈ ProbK(P) such that η = tη1 + (1 − t)η2. In
particular,

µN × η = tµN × η1 + (1− t)µN × η2.

Since µN × ηi, i = 1, 2 are F̂+-invariant, then µN × η is not ergodic
because ergodic measures are extremal points of the space of invariant
measures. This contradicts (4), thus (1) holds.

The proof is thus finished.
�
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As a corollary, we have

Corollary 3.5. If η ∈ ProbK(P) is extremal, then

1

n
log ‖An(ω)v‖ →

∫
P

∫
Σ

log ‖A(ω0)v̂‖ dµ(ω0)dη(v̂), as n→∞

for µN × η-a.e. (ω, v̂), where v ∈ v̂ with ‖v‖ = 1.

3.2. Conditional expectation. Let (Ω,F,P) be a probability space.
Let ξ ∈ L1(Ω,F,P) and denote Eξ =

∫
Ω
ξdP. Take F0 ⊂ F a sub-σ-

algebra.
E(ξ|F0) is the conditional expectation of ξ w.r.t. F0. Intuitively, it

is the best prediction of ξ given the information F0. Formally, we have

Definition 3.7. E(ξ|F0) is the “unique” random variable ξ̃ : Ω → R
such that

(1) ξ̃ is F0-measurable.

(2) ∀E ∈ F0,
∫
E
ξ̃dP =

∫
E
ξP.

The existence and uniqueness of E(ξ|F0) are given by Lebesgue-
Radon-Nikodym. More precisely, consider the map

F0 3 E 7→
∫
E

ξdP ∈ R,

which is a signed measure. We denote it by ν. Morever, it is clear that
ν � P|F0 since if P(E) = 0, E ∈ F0 then ν(E) =

∫
E
ξdP = 0. Then

by Lebesgue-Radon-Nikodym, ∃!ξ̃ ∈ L1(Ω,F0,P) s.t. dν
dP|F0

= ξ̃, which

gives (2).

Remark 3.3. If Y1, · · · , Yk are random variables on Ω, then

E(ξ|Y1, · · · , Yk) := E(ξ|σ(Y1, · · · , Yk))
which is the conditional expectation of ξ w.r.t. the σ-algebra generated
by the random variables Y1, · · · , Yk.

We may think of E(ξ|F0) as a “pixelation” of ξ where the resolution
of the pixels is determined by how fine F0 is.

Example 1. ([0, 1],B[0, 1], Leb). For n ≥ 0, let

Dn :=σ {dyadic integrals of generation n}

=σ

{
[
j

2n
,
j + 1

2n
), j = 0, · · · , 2n − 1

}
.

If ξ : [0, 1]→ R is Borel measurable, E(ξ|Dn) is a function constant
on the dyadic intervals of length 1

2n
, where the value of the constant on
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such an interval J is 1
|J |

∫
J
ξ. It is clear that Dn ⊂ Dn+1, so {Dn}n≥0

is a “filtration” of B[0, 1] and σ(∪n≥0Dn) = B[0, 1].
Example 2. Let (Σ,B, µ) be a metric space of symbols. Denote

X+ = ΣN,F = σ{cylinders} and let µN be the corresponding measure
on X. For n ≥ 0, let

Fn :=σ {cylinders in at most n variables, C[A0, · · · , An−1], Ai ⊂ Σ}
=σ {random variables depending only on : ω0, · · · , ωn−1, ωi ∈ Σ}

Given ξ : X+ → R an L1-function.

E(ξ|Fn) =

∫
X

ξ(ω)dµN(ωn, · · · ).

It is clear that Fn ⊂ Fn+1 and σ(∪n≥0Fn) = F. Thus {Fn}n≥0 is a
filtration of F.

In the following, we list some basic properties of the conditional
expectation.

Proposition 3.6. Let F0 ⊂ F be a sub-σ-algebra. The map L1(Ω,F,P) 3
ξ 7→ E(ξ|F0) ∈ L1(Ω,F0,P) has the following properties:

(1) linear: E(aξ1 + bξ2|F0) = aE(ξ1|F0) + bE(ξ2|F0), ∀ a, b ∈ R.
(2) positive: ξ ≥ 0-a.s. ⇒ E(ξ|F0) ≥ 0-a.s.
(3) monotone: if ξ1 ≤ ξ2-a.s. then E(ξ1|F0) ≤ E(ξ2|F0)-a.s.
(4) Jensen’s inequality. Assume that ϕ : R → R is convex and

ϕ(ξ) ∈ L1(Ω,F,P), then

ϕ(E(ξ|F0)) ≤ E(ϕ(ξ)|F0).

(5) If ξn ↗ ξ with ξ ≥ 0 and Eξ <∞, then E(ξn|F0)↗ E(ξ|F0).
(6) If F1 ⊂ F2, then

E(E(ξ|F2)|F1) = E(ξ|F1)

and

E(E(ξ|F1)|F2) = E(ξ|F1).

Definition 3.8. We say that a random variable ξ is independent of F0

if σ(ξ) and F0 are independent. That is, if E ∈ σ(ξ) and F ∈ F0, then
P(E ∩ F ) = P(E)P(F ).

Proposition 3.7. We have the following two properties:

(1) If ξ is F0-measurable, then E(ξ|F0) = ξ. Moreover, if f ∈ L1 is
any other random variable, then

E(ξf |F0) = ξE(f |F0).

(2) If ξ is independent of F0, then E(ξ|F0) = E(ξ).
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Proof. We only prove (2) as (1) can be derived in the same way.

Let ξ̃ = E(ξ). It is F0-measurable because it is a constant. It is
enough to show that ∀E ∈ F0,∫

E

ξdP =

∫
E

ξ̃dP = E(ξ)P(E).

Step 1. Let ξ =
∑k

i=1 ci1Ei be independent of F0, ∀E ∈ F0∫
E

ξdP =
k∑
i=1

ci

∫
E

1EidP

=
k∑
i=1

ciP(E ∩ Ei)

=
k∑
i=1

ciP(E)P(Ei)

= E(ξ)P(E).

Step 2. Let ξ ≥ 0, ξ ∈ L1 be independent of F0, then by the Simple
Function Approximation Theorem, ∃ {ξn}n≥0 a sequence of pointwise
increasing simple functions which are also independent of F0 such that
ξn ↗ ξ. Moreover, σ(ξn) ⊂ σ(ξ). Therefore, by Step 1 we have that
∀E ∈ F0,

E(ξn|F0) = E(ξn)P(E)

Let n → ∞, by item (5) of Proposition 3.6, the l.h.s. converges to
E(ξ|F0). Moreover, by the Monotone Convergence Theorem, the r.h.s.
converges to E(ξ)P(E). Thus by the uniqueness of limit, we obtain

E(ξ|F0) = E(ξ)P(E).

Step 3. Let ξ ∈ L1 be independent of F0, we may rewrite ξ = ξ+−ξ−
with ξ± ≥ 0 being also independent of F0. Moreover, σ(ξ±) ⊂ σ(ξ).
By item (1) of Proposition 3.6, we have

E(ξ|F0) = E(ξ+|F0)− E(ξ−|F0).

This implies ∀E ∈ F0,∫
E

E(ξ|F0)dP =

∫
E

E(ξ+|F0)− E(ξ−|F0)dP

=

∫
E

E(ξ+|F0)dP−
∫
E

E(ξ−|F0)dP

= E(ξ+)P(E)− E(ξ−)P
= E(ξ)P(E).
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This finishes the proof. �

Let H be a Hilbert space with inner product 〈·, ·〉 and let H0 ⊂ H

be a closed subspace. Take any v ∈ H, we may define the orthogonal
projection of v to the subspace H0 by u =: ProjH0

v satisfying u ∈ H0

and v − u ⊥ H0.
In particular, L2(Ω,F,P) is a Hilbert space with inner product 〈ξ, f〉 =

E(ξf). If F0 ⊂ F is a sub-σ-algebra, then H0 = L2(Ω,F0,P).
The following proposition says that we may regard the conditional

expectation as an orthogonal projection.

Proposition 3.8. If ξ ∈ L2(Ω,F,P), then E(ξ|F0) is the orthogonal
projection of ξ to the subspace L2(Ω,F0,P).

Proof. We first verify that E(ξ|F0) ∈ L2(F0).
By Jensen’s equality, we have

|E(ξ|F0)|2 ≤ |E(|ξ| |F0)|2 ≤ E(|ξ|2 |F0).

This implies∫
Ω

|E(ξ|F0)|2 dP ≤
∫

Ω

E(|ξ|2 |F0)dP =

∫
Ω

|ξ|2 dP = E |ξ|2 <∞.

Thus we have E(ξ|F0) ∈ L2(F0).
Then we are going to verify that ξ−E(ξ|F0) ⊥ f, ∀ f ∈ L2(F0) which

is equivalent to 〈ξ, f〉 = 〈E(ξ|F0), f〉. Namely, E(ξf) = E(E(ξ|F0)f).
Since f ∈ L2(F0), we have

E(E(ξ|F0)f) = E(E(ξf |F0)) = E(ξf).

This finishes the proof. �

Let (Ω,F,P) be a probability space. A filtration is a sequence of
σ-algebras {Fn}n≥0 with Fn ⊂ Fn+1.

Definition 3.9 (Martingale). A martingale is a sequence {(ξn,Fn)}n≥0

such that

(1) E |ξn| <∞,∀n ≥ 0,
(2) {Fn}n≥0 is a filtration,
(3) ξn is Fn-measurable,
(4) E(ξn+1|Fn) = ξn.

Example 1. (Standard random walk). Xn : Ω→ R, n ≥ 1 are i.i.d.
random variables with EX1 = 0 and E |X1| < ∞. Sn = X1 + · · · +
Xn and Fn = σ{X1, · · · , Xn}. Clearly, Sn is Fn-measurable. Then
{(Sn,Fn)}n≥1 is a martingale. Note that Sn+1 = Sn +Xn+1. Thus

E(Sn+1|Fn) = E(Sn|Fn) + E(Xn+1|Fn) = Sn + 0 = Sn.
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Example 2. (Doob’s martingale). Let Xn : Ω → R, n ≥ 1 be
random variables. Fn = σ{X1, · · · , Xn}. Assume ξ : Ω → R is a
random variable with E |ξ| <∞. Let ξn = E(ξ|Fn), then {(ξn,Fn)}n≥1

is a martingale. Note that

E(ξn+1|Fn) = E(E(ξ|Fn+1)|Fn) = E(ξ|Fn) = ξn.

Theorem 3.4 (Martingale convergence theorem). Let (Ω,F,P) be a
probability space. Let {(ξn,Fn)}n≥0 be a martingale. Then there exists
ξ∞ ∈ L1(ω,F,P) such that

(1) ξn → ξ∞-a.s. as n→∞,
(2) E(ξ∞|Fn) = ξn-a.s. ∀n ≥ 0,
(3) ξ∞ is F∞ measurable where F∞ = σ{∪n≥0Fn}.

3.3. Furstenberg formula. We begin with an abstract result.

Theorem 3.5 (Furstenberg-Kifer). Let (Ω,F,P) be a probability space.
Let M be a compact metric space and let K : M → Prob(M) be an
SDS. Given a K-Markov chain {Zn : Ω→M}n≥0, for any f ∈ C(M),
with probability one the following hold

(1) lim supn→∞
1
n

∑n−1
j=0 f(Zj) ≤ sup

{∫
M
fdη : η ∈ ProbK(M)

}
.

(2) If ProbK(M) 3 η 7→
∫
M
fdη is constant equal to β, then

lim
n→∞

1

n

n−1∑
j=0

f(Zj) = β.

In fact, by compactness of ProbK(M) and continuity of f , we may
replace “sup” in item (1) by “max”.

Proof. For (1), we first consider the first case when f = Qg − g for
some g ∈ C(M). In this case, we prove the following lemma.

Lemma 3.9. If f = Qg − g, g ∈ C(M), then

lim
n→∞

1

n

n−1∑
j=0

f(Zj(ω)) = 0, P-a.s.

Proof. Consider the random variables Wn : Ω→M,n ≥ 1,

Wn :=
n∑
j=1

Qg(Zj−1)− g(Zj)

j
.

Then Wn depends on Z0, · · · , Zn. Let Fn = σ{Z0, · · · , Zn}. We claim
that {(Wn,Fn)}n≥1 is a Martingale. By definition,

Wn+1 = Wn +
1

n+ 1
(Qg(Zn)− g(Zn+1)).



42 A. CAI, P. DUARTE, AND S. KLEIN

This implies

E(Wn+1|Fn) = Wn +
1

n+ 1
E(Qg(Zn)|Fn)− 1

n+ 1
E(g(Zn+1)|Fn).

It is clear that E(Qg(Zn)|Fn) = Qg(Zn). On the other hand, by Markov
property we have

E(g(Zn+1)|Fn) = E(g(Zn+1)|Z0, · · · , Zn) = E(g(Zn+1)|Zn).

Moreover, by the definition of the K-Markov chain,

P(Zn+1 ∈ E|Zn = x) = Kx(E).

Thus

E(g(Zn+1)|Zn = x) =

∫
M

gdKx = Qg(Zn).

Therefore,
E(Wn+1|Fn) = Wn.

There other properties of being a martingale are straightforward.Thus
we prove that {(Wn,Fn)}n≥1 is a martingale. By Martingale conver-
gence theorem, Wn → W∞ <∞ almost surely.

Recall that Kronecker’s lemma says if
∑∞

n=1 an <∞, then 1
n

∑n
j=1 jaj →

0 as n→∞. Then by this lemma, we have that when n→∞,

1

n

n∑
j=1

j · Qg(Zj−1)− g(Zj)

j
=

1

n

n∑
j=1

[Qg(Zj−1)− g(Zj)]→ 0,

namely,
1

n

n∑
j=1

[f(Zj−1) + g(Zj−1)− g(Zj)]→ 0.

Note that for g this is a telescoping sum. Since g is bounded, when
divided by n the second and third terms in the sum disappear as n→
∞, which gives

lim
n→∞

1

n

n−1∑
j=0

f(Zj) = 0.

Note that all the statements are in almost sure sense as W∞ is. This
proves the lemma. �

As M is compact, the space of continuous functions on M denoted
by C(M) is separable. Then ∃g1, · · · , gk, · · · which are dense in C(M).
Apply the previous lemma to fk := Qgk − gk, so ∃Ωk ⊂ Ω,P(Ωk) = 1
s.t. ∀ω ∈ Ωk,

1

n

n∑
j=1

[Qgk(Zj(ω))− gk(Zj(ω))]→ 0, as n→∞.
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Let Ω∗ = ∩k≥1Ωk, then P(Ω∗) = 1. Fix an arbitrary ω ∈ Ω∗, then

1

n

n∑
j=1

[Qgk(Zj(ω))− gk(Zj(ω))]→ 0, as n→∞.

For any n ≥ 1, consider the measure on M

ηn :=
1

n

n−1∑
j=0

δZj(ω) ∈ Prob(M).

Then the previous statement is equivalent to∫
M

[Qgk − gk]dηn → 0, as n→∞.

Since {gk}k≥1 is dense in C(M), ∀ g ∈ C(M),∫
M

[Qg − g]dηn → 0, as n→∞.

Let η∗ be any weak∗ limit of {ηn}n≥1. Then since g,Qg ∈ C(M),∫
M

(Qg − g)dη∗ = 0.

Namely, ∫
M

Qgdη∗ =

∫
M

gη∗, ∀ g ∈ C(M),

which shows that η∗ ∈ ProbK(M). Note that f is bounded, by the
definition and existence of limsup, there exists a sequence {nk}k≥1 such
that

lim sup
n→∞

1

n

n−1∑
j=0

f(Zj(ω)) = lim
k→∞

1

nk

nk−1∑
j=0

f(Zj(ω)) = lim
k→∞

∫
M

fdηnk <∞.

Besides, since M is compact, then Prob(M) is weak∗ compact. So we
can choose a subsequence {nki} such that∫

M

fdηnki →
∫
M

fη0, as i→∞,

where η0 ∈ ProbK(M) by the previous argument. This proves

lim sup
n→∞

1

n

n−1∑
j=0

f(Zj) ≤ sup

{∫
M

fdη : η ∈ ProbK(M)

}
with probability one. Moreover, we may replace “sup” by “max” be-
cause of the compactness of ProbK(M) and the continuity of f .
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For (2), by assumption we have, with probability one,∫
M

−fdη = −
∫
M

fdη = −β, ∀ η ∈ ProbK(M).

Apply (1) to −f , we have

lim sup
n→∞

1

n

n−1∑
j=0

−f(Zj) ≤ β.

Equivalently,

− lim inf
n→∞

1

n

n−1∑
j=0

f(Zj) ≤ −β,

and thus

lim inf
n→∞

1

n

n−1∑
j=0

f(Zj) ≥ β.

Combining (1), we have with probability one,

lim
n→∞

1

n

n−1∑
j=0

f(Zj) = β.

�

We will apply this theorem to the DDS: projective linear cocycle as
described before. Recall that we have proved η ∈ ProbK(P)⇔ µ× η ∈
ProbK̄(Σ × P). In fact, we shall see that if m ∈ ProbK̄(Σ × P), then
∃η ∈ ProbK(P) s.t. m = µ × η. Let us acknowledge this for now and
later we will prove it as a lemma.

Define α : ProbK(P)→ R as

α(η) :=

∫
Σ×P

ξ(ω0, v̂)dµ(ω0)dη(v̂),

where ξ(ω0, v̂) = log ‖A(ω0)v‖ with v ∈ v̂ a unit representative. It is
clear that α is a continuous linear functional. We define

β := max {α(η) : η ∈ ProbK(P)} .
The maximum is attained again because ProbK(P) is compact.

Theorem 3.6 (Furstenberg-Kifer). ∀ v ∈ R2 non-zero,

(1) We have

lim sup
n→∞

1

n
log ‖An(ω)v‖ ≤ β

for µN-a.e. ω ∈ X+.
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(2) If α(η) = β, ∀ η ∈ ProbK(P), then

lim
n→∞

1

n
log ‖An(ω)v‖ = β

for µN-a.e. ω ∈ X+.

Proof. Note that

max

{∫
ξdm : m ∈ ProbK̄(Σ× P)

}
(3.4)

= max

{∫
ξdµdη : η ∈ ProbK(P)

}
= β. (3.5)

Consider the K̄-Markov chain, Zn : X+×P→ Σ×P with Zn(ω, v̂) =

(ωn, Â
n(ω)v̂). Recall that we have by direct computation

1

n

n−1∑
j=0

ξ(Zn(ω, v̂)) =
1

n
log ‖An(ω)v‖

for µN × δv̂-a.e. (ω, v̂). Thus by Theorem 3.5, it remains to prove the
following:

Lemma 3.10. If m ∈ ProbK̄(Σ × P) then ∃ η ∈ ProbK(P) such that
m = µ× η.

Proof. To define a measure η, it is enough to define its corresponding
integral.

For any ψ ∈ C(P), let

I(ψ) :=

∫
Σ×P

ϕdm

where πϕ = ψ. Here π : C(Σ× P)→ C(P) is defined by

πϕ(p̂) =

∫
Σ

ϕ(ω0, p̂)dµ(ω0).

For I to make sense, we should have that if πϕ1 = πϕ2, then∫
Σ×P ϕ1dm =

∫
Σ×P ϕ2dm. Note that

Q̄ϕ(ω0, v̂) =

∫
ϕ(ω1, Â(ω0)v̂)dµ(ω1) = πϕ(Â(ω0)v̂).

Then if πϕ1 = πϕ2, then Q̄ϕ1 = Q̄ϕ2, which shows∫
Σ×P

Q̄ϕ1dm =

∫
Σ×P

Q̄ϕ2dm.
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Since m is K̄-stationary, we have∫
Σ×P

ϕ1dm =

∫
Σ×P

ϕ2dm.

Therefore, I is well defined positive linear functional and I(1) = 1. By
Riesz-Markov-Kakutani representation theorem, there exists a unique
Radon measure η ∈ Prob(P) such that

I(ψ) =

∫
ψdη.

Thus we have η ∈ Prob(P) such that∫
πϕdη =

∫
ϕdm, ∀ϕ ∈ C(Σ× P).

Namely, ∫
Σ×P

ϕdµdη =

∫
Σ×P

ϕdm, ∀ϕ ∈ C(Σ× P).

This shows m = µ× η. �

Thus the whole proof is finished. �

Next we are going to prove the Furstenberg’s formula which is par-
ticularly useful in proving modulus of continuity of the first Lyapunov
exponent.

Theorem 3.7 (Furstenberg’s formula). Given a probability space (Σ, µ)
and given a random linear cocycle A, its maximal Lyapunov exponent
L+(A) satisfies the following equation:

L+(A) = max

{∫
Σ×P

log ‖A(ω0)v‖ dµ(ω0)dη(v̂) : η ∈ ProbK(P)

}
.

where v ∈ v̂ is a unit representative.

Proof. For g ∈ GL2(R), we can alternatively define its norm

‖g‖′ := max
{
‖ge1‖ , ‖ge2‖ : {e1, e2} is a basis of R2

}
.

Note that all the norms in finite dimension are equivalent.
Let α : ProbK(P)→ R be the continuous linear functional

α(η) =

∫
Σ×P

ξ(ω0, v̂)dµ(ω0)dη(v̂).

Then max {α(η) : η ∈ ProbK(P)} =: β is attained since ProbK(P) is
weak∗ compact. Then it is enough to prove L+(A) = β.

Let M := {η ∈ ProbK(P) : α(η) = β}. Then M is non-empty, convex
and closed (hence compact). By Krein-Milman, M has at least one
extreme point. Moreover, the closed convex hull of extreme(M) is M.
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Let η0 be such an extremal point of M, then it is easy to see that
η0 is also an extremal point in ProbK(P) (one can prove it easily by
contradiction that all the admissible extremal points of M must belong
to the extremal points of ProbK(P)). Then by Proposition 3.4, µN× η0

is F̂+-ergodic.
Then by Birkhoff ergodic theorem, we have for µN × η0-a.e. (ω, v̂),

β = α(η0) =

∫
Σ×P

ξ(ω0, v̂)dµ(ω0)dη0(v̂)

=

∫
X+×P

Φ(ω, v̂)dµN(ω)dη0(v̂)

= lim
n→∞

1

n

n−1∑
j=0

Φ ◦ (F̂+)j(ω, v̂)

= lim
n→∞

1

n
log ‖An(ω)v‖

≤ lim
n→∞

1

n
log ‖An(ω)‖

= L+(A)

= lim
n→∞

1

n
log ‖An(ω)‖′

≤ max
1,2

lim sup
n→∞

1

n
log ‖An(ω)ei‖

≤ β.

Here the last inequality is due to Theorem 3.6. So L+(A) = β.
This finishes the proof. �

3.4. Furstenberg-Kifer non-random filtration. In order to make
a better comparison, we first recall the Oseledets multiplicative ergodic
theorem (it is called “random” because the subspace depends on the
base point).

Theorem 3.8 (Oseledets). Let F = FA : Ω×R2 → Ω×R2, F (ω, v) =
(f(ω), A(ω)v) be a µ-integrable cocycle given by A : X → GL2(R) over
an ergodic MPDS (Ω, f, ν), then

(1) If L+(A) = L−(A), then ∀ v ∈ R2 non-zero,

lim
n→∞

1

n
log ‖An(ω)v‖ = L+(A), ν-a.e.ω ∈ Ω.

(2) If L+(A) > L−(A), then there is a measurable map

ω 7→ Vω ⊂ R2



48 A. CAI, P. DUARTE, AND S. KLEIN

where Vω is a one dimensional subspace of R2, such that

A(ω)Vω = Vf(ω)

i.e. Vω is an F - invariant section. Moreover, if v /∈ Vω, then

lim
n→∞

1

n
log ‖An(ω)v‖ = L−(A).

Otherwise, if v ∈ Vω, then

lim
n→∞

1

n
log ‖An(ω)v‖ = L+(A)

Moreover, if f is invertible then there exists a measurable splitting
of the fiber: for ν-almost every ω ∈ Ω, R2 = E+

ω ⊕ E−ω such that

(1) A(ω)E±ω = E±f(ω).

(2) limn→∞
1
n

log ‖An(ω)v‖ = L±(A), v ∈ E±ω , v 6= 0.

(3) limn→∞
1
n

log
∣∣∣sin∠(E+

fn(ω), E
−
fn(ω))

∣∣∣ = 0.

Note that given any v ∈ R2\{0},
1

n
log ‖An(ω)v‖ → L−(A) or L+(A), ν-a.e.ω ∈ Ω.

But it could be that for some ω’s, the convergence is to L−(A) and for
other ω’s to L+. Namely, given v, where the limit goes depend on the
base point ω ∈ Ω. This holds for any cocycle over any ergodic base
dynamics. However, for random linear cocycles, we will show that the
filtration is non-random: ∃V ( R2 a linear subspace, such that

(1) A(ω)V = V ν-a.e. ω ∈ Ω,
(2) if v ∈ V \{0}, 1

n
log ‖An(ω)v‖ → L−(A), ν-a.e. ω ∈ Ω,

(3) if v /∈ V , 1
n

log ‖An(ω)v‖ → L+(A), ν-a.e. ω ∈ Ω.

This ensures that the limit is independent of the base point. Moreover,
if A is quasi-irreducible, then V = {0}, so ∀ v ∈ R2\{0},

1

n
log ‖An(ω)v‖ → L+(A), ν-a.e. ω ∈ Ω.

In particular. by Lebesgue’s dominated convergence theorem, ∀ v ∈
R2\{0},

E(
1

n
log ‖An(ω)v‖)→ L+(A).

Furthermore, the convergence is indeed uniform in v ∈ S1. This is the
main ingredient in proving the strong mixing of the Markov operator.

Before we introduce the Furstenberg-Kifer non-random filtration, let
us make some preparation.
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By Furstenberg’s formula, we know that

L+(A) = max

{∫
Σ×P

log ‖A(ω0)v‖ dµ(ω0)dη(v̂) : η ∈ ProbK(P)

}
= β

where we denote α(η) :=
∫

Σ×P log ‖A(ω0)v‖ dµ(ω0)dη(v̂). Let

E := {α(η) : η is an extreme point of ProbK(P)} .
Thus we have maxE = β (one can prove it by contradiction easily).

Lemma 3.11. We have L+(A) ∈ E ⊂ {L+(A), L−(A)}. In other
words, maxE = L+(A) and if there are other elements in E, they are
just L−(A).

Proof. If η is an extreme point in ProbK(P), then µN×η is F̂+-ergodic.
So by Birkhoff ergodic theorem, for µN × η -a.e. (ω, v̂), we have

lim
n→∞

n−1∑
j=0

Ψ ◦ (F̂+)j(ω, v̂) =

∫
X+×P

Ψ(ω, v̂)dµN(ω)dη(v̂)

=

∫
Σ×P

ξ(ω0, v̂)dµ(ω0)dη(v̂) = α(η).

Note that the l.h.s. equals limn→∞
1
n

log ‖An(ω)v‖ , v ∈ v̂, ‖v‖ = 1
which is either L+(A) or L−(A) (here it is a bit subtle in the sense that
we already know the limit exists by Birkhoff for µN×η -a.e. (ω, v̂), and
at the same time, by Oseledets we know ∀ v ∈ R2\{0}, depending on
the base point ω ∈ X+ which belongs to a full measure set, the limit is
either L+(A) or L−(A). Therefore, combining these two conditions we
obtain that the limit is either L+(A) or L−(A) for µN × η -a.e. (ω, v̂)).
Thus E ⊂ {L+(A), L−(A)}. Since we already have maxE = L+(A),
the lemma follows. �

Now we can formulate the main theorem in this subsection.

Theorem 3.9 (Furstenberg-Kifer non-random filtration). There is a
linear subspace V ( R2 such that

(1) V is A-invariant, A(ω0)V = V for µ-a.e. ω0 ∈ Σ.
(2) If η is an extreme point in ProbK(P) and α(η) = L−(A), then

η(v̂) = 1 where v ∈ V .
(3) If v ∈ V \{0} then

lim
n→∞

1

n
log ‖An(ω)v‖ = L−(A), µN-a.e.

(4) If v /∈ V , then

lim
n→∞

1

n
log ‖An(ω)v‖ = L+(A), µN-a.e.
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Proof. Case 1. #E = 1, i.e. E = {L+(A)}. We will show that in this
case V = {0}.

By assumption, we have α(η) = β for any η being an extreme point
of ProbK(P). Then necessarily, α(η) ≡ β, ∀ η ∈ ProbK(P).

Indeed, let again M := {η ∈ ProbK(P) : α(η) = β} which is non-
empty, convex and compact. So by Krein-Milman,

M = Co(M) ⊃ Co(extreme(ProbK(P))) = ProbK(P).

Thus M = ProbK(P). This shows α(η) = β, ∀ η ∈ ProbK(P). Since α
is constant, by Theorem 3.6 we have ∀ v ∈ R2\{0},

1

n
log ‖An(ω)v‖ → β = L+(A), as n→∞

for µN-a.e. ω ∈ X+. Therefore if we put V = {0}, then the theorem
holds.

Case 2. #E = 2, i.e. E = {L+(A), L−(A)} and L+(A) > L−(A).
Let

V :=

{
v ∈ R2 : lim sup

n→∞

1

n
log ‖An(ω)v‖ ≤ L−(A), µN-a.e.ω ∈ X+

}
.

We are going to prove V satisfies (1)-(4). We do several steps.

(1) V is a linear subspace. Let v1, v2 ∈ V , a, b ∈ R. Then

‖An(ω)(av1 + bv2)‖ ≤ |a| ‖An(ω)v1‖+ |b| ‖An(ω)v2‖
≤ max {|a| ‖An(ω)v1‖ , |b| ‖An(ω)v2‖} .

Take “1/n log” on both sides and let n→∞ (taking lim sup),

lim sup
n→∞

1

n
log ‖An(ω)(av1 + bv2)‖

≤max

{
lim sup
n→∞

1

n
log ‖An(ω)v1‖ , lim sup

n→∞

1

n
log ‖An(ω)v2‖

}
≤ L−(A),

for µN-a.e. ω ∈ X+. Thus av1 + bv2 ∈ V which shows V is a
linear subspace.

(2) If η− ∈ ProbK(P) which is extreme such that α(η−) = L−(A) (in
case 2 there are such measures), then we have η−(v̂) = 1, v ∈ V .
Indeed,

L−(A) = α(η−) = lim
n→∞

1

n

n−1∑
j=0

Ψ ◦ (F̂+)j(ω, v̂) = lim
n→∞

1

n
log ‖An(ω)v‖
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holds for µN × η−-a.e. (ω, v̂). By Fubini’s theorem, for η−-a.e.
v̂ ∈ P we have

lim
n→∞

log ‖An(ω)v‖ = L−(A), µN-a.e. ω ∈ X+.

This shows for such v̂’s, v ∈ V . Thus η−(v̂) = 1 where v ∈ V .
In particular V 6= {0}, otherwise v̂ = ∅ ⇒ η(v̂) = 0 6= 1.

(3) V is a proper subspace. We already have V 6= {0}, so it is
enough to show that V 6= R2.

∃η+, s.t.α(η+) = L+(A) > L−(A).

and

α(η+) = lim
n→∞

1

n
log ‖An(ω)v‖ , µN × η+-a.e. (ω, v̂).

Such v’s are not in V , which shows V 6= R2.
(4) V is A-invariant. Let η− be an extreme point in ProbK(P) s.t.

α(η−) = L−(A), then we know η−(v̂) = 1 with v ∈ V . Since η−
is K-stationary, we have ∀ϕ ∈ L∞(P)∫

ϕdη− =

∫
Qϕdη− =

∫
ϕ(Â(ω0)v̂))dµ(ω0)dη−(v̂).

Take ϕ = 1v̂, then

1 = η−(v̂) =

∫
1v̂dη− =

∫
1v̂(Â(ω0)v̂)dη−(v̂)dµ(ω0)

=

∫
1 ̂A(ω0)−1v

(v̂)dη−(v̂)dµ(ω0)

=

∫
η−( ̂A(ω0)−1v)dµ(ω0).

This shows η−( ̂A(ω0)−1v) = 1 for µN-a.e. ω0 ∈ Σ. Therefore
∀ v ∈ V , A(ω0)v = v for µN-a.e. ω0 ∈ Σ. Namely, V is A-
invariant.

(5) If v ∈ V \{0}, then V̂ = {v̂}, η−(V̂ ) = η−(v̂) = 1 where η− is
extreme such that α(η−) = L−(A). Moreover,

α(η−) = L−(A) = lim
n→∞

1

n

n−1∑
j=0

Ψ ◦ (F̂+)j(ω, v̂) = lim
n→∞

1

n
log ‖An(ω)v‖

for µN × η−-a.e. (ω, v̂). This implies

L−(A) = lim
n→∞

1

n
log ‖An(ω)v‖

for µN-a.e. ω ∈ X+.
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(6) Let v /∈ V , V is a one-dimensional linear subspace which is A-
invariant. By a change of variables, we can assume that v =(

1
0

)
. Then

A(ω) =

(
b(ω) c(ω)

0 d(ω)

)
and

An(ω) =

(
bn(ω) cn(ω)

0 dn(ω)

)
It is easy to see that for µN-a.e. ω ∈ X+

L+(A) = max

{
1

n
log |bn(ω)| , 1

n
log |dn(ω)|

}
.

Moreover, ∥∥∥∥An(ω)

(
1
0

)∥∥∥∥ =

∥∥∥∥(bn(ω)
0

)∥∥∥∥ = |bn(ω)| .

So we have

1

n
log |bn(ω)| = 1

n
log

∥∥∥∥An(ω)

(
1
0

)∥∥∥∥→ L−(A), as n→∞.

Thus
1

n
log |dn(ω)| → L+(A), as n→∞.

almost surely.
Now take any v /∈ V , then

v =

(
t
1

)
for some t ∈ R. Therefore,

An(ω)v =

(
tbn(ω) + cn(ω)

dn(ω)

)
which implies that

‖An(ω)v‖ ≥ |dn(ω)| .
Thus

1

n
log ‖An(ω)v‖ ≥ 1

n
log |dn(ω)| → L+(A).

Combining with the Furstenberg-Kifer theorem, we have

1

n
log ‖An(ω)v‖ → L+(A)

for µN-a.e. ω ∈ X+.
This finishes the whole proof. �
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3.5. Uniform convergence of the directional Lyapunov expo-
nent. Recall that the definitions of irreducibility and quasi-irreducibility
is defined as follows:

Definition 3.10. A linear cocycle A is irreducible if there is no in-
variant proper subspace (which is a line). Namely, @ l ⊂ R2 s.t.
A(ω0)l = l, µ-a.e. ω0 ∈ Σ. A is quasi-irreducible if @ l ⊂ R2 such
that l is A-invariant and L(A|l) < L+(A).

Remark 3.4. A is quasi-irreducible if and only if the Furstenberg-Kifer
non-random filtration is trivial: V = {0}, i.e. ∀ v ∈ R2\{0},

1

n
log ‖An(ω)v‖ → L+(A), µN-a.e.ω ∈ X+, as n→∞.

Moreover, it is also equivalent to saying that α(η) ≡ β, ∀ η ∈ ProbK(P).

Theorem 3.10. Assume that A is quasi-irreducible and L+(A) >
L−(A), then

E(
1

n
log ‖An(ω)v‖)→ L+(A), as n→∞

uniformly in v ∈ S1.

Proof. Since A is irreducible, by the previous remark and Lebesgue
dominated convergence theorem, we have the pointwise convergence:

E(
1

n
log ‖An(ω)v‖)→ L+(A), ∀ v ∈ S1, as n→∞.

Assume by contradiction that the convergence is not uniform, then
∃ δ > 0 and a sequence of {vnk}k≥1 ⊂ S1 such that∣∣∣∣E(

1

nk
log ‖Ank(ω)vnk‖)− L+(A)

∣∣∣∣ ≥ δ, ∀ k ≥ 1.

To simplify the notation, we just write n standing for nk but we should
bear in mind that from now on {n} is actually a subsequence. More-
over, we may assume that vn → v0 ∈ S1 by compactness of the circle.

Note that for n ≥ N with N large enough, it can not happen that

E(
1

n
log ‖An(ω)vn‖) ≥ L+(A) + δ

because

E(
1

n
log ‖An(ω)vn‖) ≤ E(

1

n
log ‖An(ω)‖) < L+(A) +

δ

2
.

Thus we only need to consider the case when

E(
1

n
log ‖An(ω)vn‖) ≤ L+(A)− δ.
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We are going to prove it actually can not happen either. To achieve
that, we give a claim first and prove it later.

We claim that

lim inf
n→∞

‖An(ω)vn‖
‖An(ω)‖

= c(ω) > 0, µN -a.e.ω ∈ X+.

Accepting it for now, we get

1

n
log
‖An(ω)vn‖
‖An(ω)‖

→ 0

almost surely as n → ∞. By Lebesgue dominated convergence theo-
rem,

E(
1

n
log
‖An(ω)vn‖
‖An(ω)‖

)→ 0, as n→∞.

However, the l.h.s. is equal to

E(
1

n
log ‖An(ω)vn‖)− E(

1

n
log ‖An(ω)‖) ≤ −δ

2
, as n→∞.

This is a contradiction. So we prove the uniform convergence in v ∈ S1.
Before giving the proof of the claim, we recall the concept of singular

values and singular directions. These are some ingredients in the proof
of Oseledets.

Let g ∈ GL2(R), the singular values of g : s+(g) ≥ s−(g) ≥ 0 are the

eigenvalues of (g∗g)
1
2 It turns out that

s+(g) = max
v∈S1
‖gv‖ = ‖g‖

is the maximum expansion of g.

s−(g) = min
v∈S1
‖gv‖ = ‖g‖

is the minimum expansion of g.
If s+(g) > s−(g), we can define (up to a sign) the singular directions

v+(g), v−(g) ∈ S1 as the eigendirections of (g∗g)
1
2 corresponding to the

eigenvalues s+(g), s−(g). Note that v+(g) ⊥ v−(g). We can do the some
for the transpose g∗ and we have s±(g) = s±(g∗), gv±(g) = s±(g)v±(g∗).

For any w ∈ S1, we have w = av+(g) + bv−(g) where a = 〈w, v+(g)〉
and b = 〈w, v−(g)〉. Applying g on both sides of the equation, we get

gω = a ‖g‖ v+(g∗) + b
∥∥g−1

∥∥−1
v−(g∗).

Thus ‖gω‖ ≥ |a| ‖g‖
By assumption, we have An(ω) ∈ GL2(R) and L+(A) > L−(A).

Moreover,

L+(A) = lim
n→∞

1

n
log s+(An(ω)),
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and

L−(A) = lim
n→∞

1

n
log s−(An(ω))

for µN-a.e. ω ∈ X+. Therefore, for almost every ω, ∃Nω such that
∀n ≥ Nω, we have s+(An(ω)) > s−(An(ω)). Thus in this case, v±(An(ω))
are well defined.

For n ≥ 1, let un(ω) = v+(An(ω)) when it makes sense (e.g. n is
large enough). Then un : X+ → S1 is the most expanding direction of
each n-th iterates. We also write ûn : X+ → P as the corresponding
projective version. We list two facts of un and ûn below:

• Fact 1. {ûn}n≥1 converges as n → ∞ for µN a.e. ω ∈ X+ and
we call the limit respectively û∞ : X+ → P and u∞ : X+ → S1.
• Fact 2. u∞(ω)⊥ = E−(ω) for µN a.e. ω ∈ X+.

Now we can prove the claim, by direct computation

‖An(ω)vn‖
‖An(ω)‖

≥ |〈vn, v+(An(ω))〉| = |〈vn, un〉| .

Take lim inf on both sides, we have

lim inf
n→∞

‖An(ω)vn‖
‖An(ω)‖

≥ |〈v0, u∞(ω)〉|

for µN a.e. ω ∈ X+.
Note that if 〈v0, u∞(ω)〉 = 0, then v ∈ u∞(ω)⊥ = E−(ω). However,

v0 ∈ E−(ω) happens for a set of ω’s of probability zero because of
quasi-irreducibility. This shows

lim inf
n→∞

‖An(ω)vn‖
‖An(ω)‖

> 0

for µN a.e. ω ∈ X+, which proves the claim.
This finishes the whole proof. �

3.6. The strong mixing of the Markov operator. Our setup is
the following. (Σ, µ) is a probability space. A : Σ→ GL2(R) is contin-
uous, quasi-irreducible and L+(A) > L−(A). Moreover, there is some
constant C such that ‖A‖ ≤ C (a consequence by being continuous
on a compact set) and ‖A−1‖ ≤ C (extra assumption). The Markov
operator Q = QA : L∞(P)→ L∞(P) is defined as

Qϕ(v̂) =

∫
Σ

ϕ(Â(ω0)v̂)dµ(ω0).

Define the metric on P by δ(p̂, q̂) = sin∠(p, q) = ‖p∧q‖
‖p‖‖q‖ , p ∈ p̂, q ∈ q̂.

On L∞(P), the infinity norm is defined by ‖ϕ‖∞ = supp̂∈P |ϕ(p̂)|. For
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α ∈ (0, 1), we define the α seminorm on L∞(P) as

vα(ϕ) := sup
p̂ 6=q̂

|ϕ(p̂)− ϕ(q̂)|
δ(p̂, q̂)α

.

This is not a norm as vα(ϕ) = 0 ⇒ ϕ = const. We call it α-Hölder
seminorm. Then we can define the α-Hölder norm by

‖ϕ‖α = ‖ϕ‖∞ + vα(ϕ).

Denote Hα(P) := {ϕ ∈ L∞(P) : vα(ϕ) <∞}. Then (Hα(P), ‖·‖α) is a
normed space. For the observable

ψA(v̂) =

∫
Σ

log ‖A(ω0)v‖ dµ(ω0),

it is easy to see that ψA ∈ Hα(P).
Our goal is to show that ∃α ∈ (0, 1) s.t. QA is strongly mixing on

Hα(P). That is,

∥∥∥∥Qn
A(ϕ)−

∫
ϕdη

∥∥∥∥
∞
≤ cσn ‖ϕ‖α ,∀ϕ ∈ Hα(P)

with constants c > 0 and σ ∈ (0, 1).
Define

Kα(A, µ) := sup
p̂ 6=q̂

∫
Σ

[
δ(Â(ω0)p̂, Â(ω0)q̂)

δ(p̂, q̂)

]α
dµ(ω0).

It measures the average Hölder constant of p̂→ Â(ω0)p̂. We will prove
several propositions about Kα.

Proposition 3.12. ∀ϕ ∈ Hα(P), vα(QA(ϕ)) ≤ Kα(A, µ)vα(ϕ).
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Proof. Given ϕ ∈ Hα(P),∀ p̂, q̂ ∈ P, we have

|QA(ϕ)(p̂)−QA(ϕ)(q̂)|
δ(p̂, q̂)α

=

∣∣∣∫Σ
ϕ(Â(ω0)p̂)− ϕ(Â(ω0)q̂)dµ(ω0)

∣∣∣
δ(p̂, q̂)α

≤

∫
Σ

∣∣∣ϕ(Â(ω0)p̂)− ϕ(Â(ω0)q̂)
∣∣∣ dµ(ω0)

δ(p̂, q̂)α

≤
∫

Σ

∣∣∣ϕ(Â(ω0)p̂)− ϕ(Â(ω0)q̂)
∣∣∣

δ(Â(ω0)p̂, Â(ω0)q̂)α
· δ(Â(ω0)p̂, Â(ω0)q̂)α

δ(p̂, q̂)α
dµ(ω0)

≤vα(ϕ) ·
∫

Σ

δ(Â(ω0)p̂, Â(ω0)q̂)α

δ(p̂, q̂)α
dµ(ω0).

Take the supremum in p̂ 6= q̂ on both sides, we get exactly

vα(QA(ϕ)) ≤ Kα(A, µ)vα(ϕ).

�

Proposition 3.13. The sequence {Kα(An, µn)}n≥0 is sub-multiplicative:
∀n,m ∈ N,

Kα(An+m, µn+m) ≤ Kα(An, µn)Kα(Am, µm).

Note that for n = 0, Kα(An, µn) = 1.

Proof. Direct computation shows

Kα(An+m, µn+m) = sup
p̂6=q̂

∫
Σn+m

[
δ(Ân+m(ω)p̂, Ân+m(ω)q̂)

δ(p̂, q̂)

]α
dµn+m(ω)

= sup
p̂ 6=q̂

∫
Σn+m

[
δ(Ân+m(ω)p̂, Ân+m(ω)q̂)

δ(Âm(ω)p̂, Âm(ω)q̂)

]α [
δ(Âm(ω)p̂, Âm(ω)q̂)

δ(p̂, q̂)

]α
dµn+m(ω)

= sup
p̂ 6=q̂

∫
Σm

[
δ(Âm(ω)p̂, Âm(ω)q̂)

δ(p̂, q̂)

]α ∫
Σn

[
δ(Ân+m(ω)p̂, Ân+m(ω)q̂)

δ(Âm(ω)p̂, Âm(ω)q̂)

]α
dµndµm

≤Kα(An, µn)Kα(Am, µn).

Note that the last equality holds because A takes value in GL2(R)
which never maps a line to zero. �

Remark 3.5. As A and A−1 are assumed to be bounded by some
constant C > 0, we have that given any n ∈ N, for 0 < α < 1

4n
, we

have Kα(An, µn) ≤ eC =: L.
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Proposition 3.14. ∀n ∈ N, QAn = (QA)n.

Proof. By definition,

QA(ϕ)(v̂) =

∫
Σ

ϕ(Â(ω)v̂)dµ(ω0).

Then

(QA)2(ϕ)(v̂) =

∫
Σ

(QAϕ)(Â(ω0)v̂)dµ(ω0)

=

∫
Σ

∫
Σ

ϕ(Â(ω1)Â(ω0)v̂)dµ(ω0)dµ(ω1)

= (QA2)(ϕ)(v̂).

The proof follows by induction. �

Proposition 3.15. Given α > 0 and two point p̂ 6= q̂ ∈ P, we have[
δ(Â(ω0)p̂, Â(ω0)q̂)

δ(p̂, q̂)

]α
≤ |detA(ω0)|α

2

[
1

‖A(ω0)p‖2α +
1

‖A(ω0)q‖2α

]
.

for any ω0 ∈ Σ.

Proof. By the property of exterior product, we have

‖A(ω0)p ∧ A(ω0)q‖ = ‖∧2A(ω0)(p ∧ q)‖ = |detA(ω0)| ‖p ∧ q‖ .
Hence,[
δ(Â(ω0)p̂, Â(ω0)q̂)

δ(p̂, q̂)

]α
≤
[
‖A(ω0)p ∧ A(ω0)q‖
‖A(ω0)p‖ ‖A(ω0)q‖

· ‖p‖ ‖q‖
‖p ∧ q‖

]α
=

[
|detA(ω0)|

‖A(ω0)p‖ ‖A(ω0)q‖

]α
≤ |detA(ω0)|α

2

[
1

‖A(ω0)p‖2α +
1

‖A(ω0)q‖2α

]
.

Here the last inequality uses
√
ab ≤ 1

2
(a + b) for non-negative a and

b. �

Proposition 3.16. Given a cocycle (A, µ) ∈ L∞(Σ,GL2(R))×Prob(Σ),
we have that

Kα(A, µ) ≤ sup
p̂∈P

∫
Σ

|detA(ω0)|α

‖A(ω0)p‖2α dµ(ω0) = sup
p̂∈P

E(

[
|detA(ω0)|
‖A(ω0)p‖2

]α
)

holds ∀α > 0. Note that |detA(ω0)| = s1(A(ω0))s2(A(ω0)).

Proof. It follows from the definition of Kα and the previous proposition
by taking integral and supremum in p̂ 6= q̂ on both sides. �
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Proposition 3.17. Let (A, µ) ∈ L∞(Σ,GL2(R))×Prob(Σ) be a quasi-
irreducible cocycle with L+(A) > L−(A). There are numbers α ∈ (0, 1),
κ ∈ (0, 1) and n ∈ N s.t. Kα(An, µn) ≤ κ.

Proof. We know by Theorem 3.10 that as n→∞

E(
1

n
log ‖An(ω)v‖)→ L+(A)

uniformly in v ∈ S1. Thus

E(
1

n
log ‖An(ω)v‖−2)→ −2 · L+(A)

uniformly in v ∈ S1. Therefore, ∀ ε > 0, ∀ v ∈ S1, ∃N = N(ε) ∈ N
which does not depend on v, such that ∀n > N we have

−2L+(A)− ε ≤ E(
1

n
log ‖An(ω)v‖−2) ≤ −2L+(A) + ε

Therefore, by choosing ε sufficiently small e.g. ε < 1
4
[L+(A) − L−(A)]

and n large enough, we have

E(log ‖An(ω)v‖−2) ≤ n(−2L+(A) + ε)

Moreover, we have

log |detAn(ω)| = log |s1(An(ω))|+log |s2(An(ω))| ≤ n(L+(A)+L−(A)+ε).

Combining these two estimates, we have

log
|detAn(ω)|
‖An(ω)v‖2 ≤ n(L+(A) + L−(A) + ε) + n(−2L+(A) + ε)

= n(L−(A)− L+(A) + 2ε)

≤ n · 1

2
(L−(A)− L+(A))

≤ −1

as n is sufficiently large and L+(A) > L−(A).
Making use of the inequality

ex ≤ 1 + x+
x2

2
e|x|,
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we have ∀ v ∈ S1,

E(

[
|detAn(ω)|
‖An(ω)v‖2

]α
)

=E(e
α log

|detAn(ω)|
‖An(ω)v‖2 )

≤E(1 + α log
|detAn(ω)|
‖An(ω)v‖2 +

[α log |detAn(ω)|
‖An(ω)v‖2 ]2

2
e

∣∣∣∣α log
|detAn(ω)|
‖An(ω)v‖2

∣∣∣∣
)

≤1− α + O(α2)

≤κ < 1

as we take α sufficiently small. Therefore, by the previous proposition
we get Kα(An, µn) ≤ κ < 1. �

Remark 3.6. In practice, the advantage of our method here is that
we can give a precise lower bound of the Hölder exponent α for any
specific admissible model (A, µ). To achieve this, just choose the first
n ∈ N such that

log
|detAn(ω)|
‖An(ω)v‖2 ≤ −1.

for any starting point v ∈ S1 (this arbitrary choice of v is ensured by
uniform convergence) and then use n to determine α by making the
desired term smaller than 1. Namely, our α is exactly computable!

Now we can easily prove that QA is strongly mixing.

Theorem 3.11. QA is strongly mixing on Hα(P) where α ∈ (0, 1) is
given by Proposition 3.17. In fact, we can prove a stronger statement.
That is, for ϕ ∈ Hα(P), ∀n ∈ N∥∥∥∥Qn

A(ϕ)−
∫
ϕdη

∥∥∥∥
α

≤ C0σ
n ‖ϕ‖α

where C0 > 0 and σ ∈ (0, 1) are constants.

Proof. By Proposition 3.12 and 3.14, we have ∀ϕ ∈ Hα(P),

vα(Qs
A(ϕ)) = vα(QAs(ϕ)) ≤ Kα(As, µs)vα(ϕ), ∀ s ∈ N.

Choose the parameter n from Proposition 3.17. For anym = kn+r ∈
N with k, r ∈ N and r < n, we have

vα(Qm
A (ϕ)) ≤ [Kα(An, µn)]kKα(Ar, µr)vα(ϕ) ≤ κk · Lvα(ϕ).

Then if we denote σ = κ
1
n < 1, then

vα(Qm
A (ϕ)) ≤ Cσmvα(ϕ),
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where C is a constant.
∀ϕ ∈ Hα(P), we have ∀n ∈ N∥∥∥∥Qn
A(ϕ)−

∫
ϕdη

∥∥∥∥
α

=

∥∥∥∥Qn
A(ϕ)−

∫
ϕdη

∥∥∥∥
∞

+ vα

(
Qn
A(ϕ)−

∫
ϕdη

)
.

Note that

vα

(
Qn
A(ϕ)−

∫
ϕdη

)
≤ vα (Qn

A(ϕ)) ≤ Cσnvα(ϕ) ≤ Cσn ‖ϕ‖α .

Since vα (Qn
A(ϕ)) ≤ Cσnvα(ϕ), then Qn

A(ϕ) is almost constant in v̂ ∈ P:
∀ p̂ 6= q̂ ∈ P

|Qn
A(ϕ)(p̂)−Qn

A(ϕ)(q̂)| ≤ Cσnvα(ϕ).

Thus ∀ p̂ ∈ P, ∣∣∣∣Qn
A(ϕ)(p̂)−

∫
Qn
A(ϕ)dη

∣∣∣∣ ≤ Cσnvα(ϕ).

Note that η ∈ ProbK(P) is QA-invariant. So
∫
Qn
A(ϕ)dη =

∫
ϕdη. Thus∥∥∥∥Qn

A(ϕ)−
∫
ϕdη

∥∥∥∥
∞
≤ Cσnvα(ϕ).

To conclude,∥∥∥∥Qn
A(ϕ)−

∫
ϕdη

∥∥∥∥
α

≤ 2Cσnvα(ϕ) ≤ 2Cσn ‖ϕ‖α .

This finishes the proof. �

By Lemma 5, we get that Q̄ is strongly mixing on E = Hα(Σ×P) :=
{ϕ ∈ C0(Σ× P) : vα(Πϕ) <∞}. Note that ΠHα(Σ× P) = Hα(P).

Denote (M,K, µ,E) = (Σ×P, K̄, µ× η,Hα(Σ×P)), apply Theorem
2.1, we obtain Theorem 3.2.

4. Mixed random-quasiperiodic dynamics

We will derive statistical properties for the following skew-product
dynamical system.

Let Σ = Td and µ ∈ Prob(Td). Consider the map

f : ΣZ × Td → ΣZ × Td, f(ω, θ) = (σω, θ + ω0).

We will consider the MPDS (ΣZ × Td, f, µZ ×m) where m is the Haar
measure on the torus Td. For simplicity, from now on we set d = 1.
Things are the same in the higher dimensional torus. For d = 1, m is
just the Lebesgue measure on the circle.
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Theorem 4.1. (ΣZ×T, f, µZ×m) is ergodic if and only if ∀ k 6= 0 ∈ Z,
∃α ∈ supp(µ) such that kα /∈ Z. In particular, if ∃α ∈ supp(µ) with
α /∈ Q, then f is ergodic.

Remark 4.1. A simple example of not having any irrational number
in the supp(µ) but still having ergodicity is supp(µ) = { 1

n
}n∈N.

Consider the Markov chain on Σ× T:

(ω0, θ)→ (ω1, θ + ω0)→ (ω2, θ + ω0 + ω1)→ · · ·
Its Markov kernel on Σ× T is defined as

K̄(ω0,θ) =

∫
Σ

δ(ω1,θ+ω0)dµ(ω1).

The corresponding Markov operator Q̄ on L∞(Σ× T) is

Q̄ϕ(ω0, θ) =

∫
Σ

ϕ(ω1, θ + ω0)dµ(ω1).

Our goal is to prove that Q̄ is strongly mixing on an appropriate
space of observables. To achieve this, we will make some preparations.

4.1. Some basic Fourier analysis concepts. Let ϕ ∈ L1(T), its
Fourier coefficients are

ϕ̂(k) :=

∫ 1

0

ϕ(x)e−2πikxdx, ∀ k ∈ Z.

Note that roughly speaking,

ϕ(x) ≈
+∞∑

k=−∞

ϕ̂(k)e2πikx

where the r.h.s. is the Fourier series of ϕ. Moreover, for N ∈ N let

SNϕ(x) :=
N∑

k=−N

ϕ̂(k)e2πikx

be the N -th partial series.
The Fourier series “represents” the function in certain sense.

(1) If ϕ̂1(k) = ϕ̂2(k), ∀ k ∈ Z, then ϕ1 = ϕ2 m-a.e.
(2) If ϕ ∈ L2(T), then

ϕ(x) =
+∞∑

k=−∞

ϕ̂(k)e2πikx,

in L2(T). That is ‖SNϕ− ϕ‖2 → 0 as N →∞.
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(3) If ϕ is Hölder continuous, then

ϕ(x) =
∞∑

k=−∞

ϕ̂(k)e2πikx, ∀x ∈ T.

(4) If ϕ ∈ Lp(T) with p > 1, then by Carleson’s Theorem

ϕ(x) =
∞∑

k=−∞

ϕ̂(k)e2πikx, m-a.e.x ∈ T.

We also recall estimates on the size of the Fourier coefficients. For
example, it is clear that |ϕ̂(k)| ≤ ‖ϕ‖1 ,∀ k ∈ Z and ϕ̂(0) =

∫ 1

0
ϕ(x)dx.

We also have the Riemann-Lebesgue lemma showing that if ϕ ∈ L1,
then ϕ̂(k)→ 0 as |k| → ∞. Moreover, if ϕ is α-Hölder, then |ϕ̂(k)| ≤
C · 1

|k|α where C ∼ ‖ϕ‖α.

There are other facts which concentrate on the approximation prop-
erty. By Weierstrass approximation theorem, every continuous function
is uniformly approximated by trigonometric polynomials of the form

p =
n∑

k=−n

cke
2πikx, ck ∈ C, deg p ≤ n.

If ϕ is Hölder, we have the following theorem.

Theorem 4.2. If ϕ is α-Hölder continuous, then ∀n ∈ N, ∃ pn which
are trigonometric polynomials with deg pn ≤ n such that

‖ϕ− pn‖∞ . ‖ϕ‖α
1

nα
.

Moreover, ∀ k ∈ Z, |p̂n(k)| ≤ |ϕ̂(k)|.

4.2. Mixing measures. Let µ ∈ Prob(T). We consider the Markov
chain on T:

θ → θ + ω0 → θ + ω0 + ω1 → · · ·
The corresponding Markov kernel K is

Kθ =

∫
T
δθ+ω0dµ(ω0).

The corresponding Markov operator is

Q = Qµ : L1(T)→ L1(T), Qϕ(θ) =

∫
T
ϕ(θ + ω0)dµ(ω0).

Note that Q is bounded on L1(T,m), L2(T,m) and L∞(T,m) because
m is translation invariant, which also ensures that m is K-stationary.
Hence (T, K,m) is a Markov system.
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Our first goal is to show that the Markov operator Q of the Markov
system (T, K,m) is strongly mixing under certain assumptions on µ
and for an appropriate space of observables.

Let us make some preparations first. Recall that the Fourier coeffi-
cients of a measure µ ∈ Prob(T) is defined by

µ̂(k) :=

∫
T
e2πikxdµ(x).

It is equivalent if we put “e−2πikx” in the definition. Observe that if
µ� m, namely dµ = hdm with h ≥ 0 and

∫
hdm = 1, then

µ̂(k) =

∫
T
e−2πikxh(x)dm(x) = ĥ(−k).

We call ek(x) := e2πikx : T→ C, k ∈ Z “characters”. It is clear that
they are group homomorphisms.

Lemma 4.1. The characters {ek, k ∈ Z} form a complete basis of
eigenvectors for the Markov operator Q : L2(T) → L2(T). That is,
Qek = µ̂(k)ek, ∀ k ∈ Z and if ϕ =

∑∞
k=−∞ ϕ̂(k)ek in L2(T,m), then

Qϕ =
∞∑

k=−∞

µ̂(k)ϕ̂(k)ek, in L2(T,m).

Proof. By the linearity of Q, it is enough to prove the first equality.
For any θ ∈ T and any k ∈ Z, we have

Qek(θ) =

∫
T
ek(θ + ω0)dµ(ω0)

=

∫
T
ek(θ)ek(ω0)dµ(ω0)

= ek(θ)

∫
ekdµ = ek(θ)µ̂(k).

Thus the result follows. �

Remark 4.2. It turns out that the mixed model (ΣZ×T, f, µZ×m) is
ergodic if and only if µ̂(k) 6= 1,∀ k ∈ Z\{0}, if and only if ∀ϕ ∈ C0(T)

1

n

n−1∑
j=0

Qjϕ(θ)→
∫
ϕdm as n→∞, ∀ θ ∈ T.

For completion, we borrow all the equivalent conditions of ergodicity
from [1]. To make it consistent with our pedagogical context, one can
simply let d = 1 in the following theorem.
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Theorem 4.3. Let µ ∈ Prob(Σ) where Σ = Td, and consider the skew
product map on ΣZ × Td given by f({βi}, θ) = (σ{βi}, θ + β0). The
following statements are equivalent:

(1) f is ergodic w.r.t. µZ ×m;
(2) f is ergodic w.r.t. µN ×m;
(3) Every m-stationary observable ϕ ∈ L∞(Td) is constant m-a.e.;
(4) µ̂(k) 6= 1 for every k ∈ Zd \ {0};
(5) For every k ∈ Zd \ {0} there exists α ∈ Σ such that 〈k, α〉 /∈ Z;
(6) Td = ∪n≥1Σn where Σ = supp(µ) and Σn := Σ+Σn−1 ∀n ≥ 2;
(7) m is the unique µ-stationary measure in Prob(Td),
(8) limn→+∞

1
n

∑n−1
j=0 (Qjµϕ)(θ) =

∫
Td ϕdm, ∀ θ ∈ Td ∀ϕ ∈ C0(Td).

Proof. (1) ⇒ (2) holds trivially because f in (2) is a factor f in (1),
i.e., because of the commutativity of the following diagram of measure
preserving transformations.

X
f−−−→ X

π

y yπ
X+ f−−−→ X+

Conversely, (2) ⇒ (1) holds by Lemma 5.3.1 in [6].
The equivalence (2) ⇔ (3) follows from Proposition 5.13 in [7].

Given a bounded measurable function ϕ : Td → C, we have ϕ ∈
L2(Td,m). Consider its Fourier series

ϕ =
∑
k∈Zd

ϕ̂(k) ek with ek(θ) := e2πi〈k,θ〉.

A simple calculation shows that

Qµϕ =
∑
k∈Zd

µ̂(k) ϕ̂(k) ek.

(3) ⇒ (4): If µ̂(k) = 1 for some k ∈ Zd \ {0}, then ek is a non
constant m-stationary observable. In other words, if (4) fails then so
does (3).

(4) ⇒ (3): Given ϕ m-stationary, comparing the two Fourier devel-
opments above, for all k ∈ Zd µ̂(k) ϕ̂(k) = ϕ̂(k) ⇔ ϕ̂(k) (µ̂(k)−1) =
0. By (4) we then get ϕ̂(k) = 0 for all k ∈ Zd \ {0}, which implies that
ϕ = ϕ̂(0) is m-a.e. constant. This proves (3).
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Since µ̂(k) is an average of a continuous function with values on the
unit circle, we have

µ̂(k) = 1 ⇔ e2πi〈k,α〉 = 1, ∀α ∈ Σ ⇔ 〈k, α〉 ∈ Z, ∀α ∈ Σ.

This proves that (4) ⇔ (5).

(5) ⇒ (6): Let H = ∪n≥1Σn and assume that H 6= Td. By definition
H is a subsemigroup of Td. By Poincaré recurrence theorem, H is also
a group. By Pontryagin’s duality for locally compact abelian groups,
there exists a non trivial character ek : Td → C which contains H in
its kernel. In particular this implies that there exists k ∈ Zd \ {0} such
that 〈k, β〉 ∈ Z for all β ∈ Σ. This argument shows that if (6) fails
then so does (5).

(6) ⇒ (5): Assume that (5) does not hold, i.e., for some k ∈ Zd\{0}
we have 〈k, α〉 ∈ Z for all α ∈ Σ. Then ek is a non trivial character of
Td and H := {θ ∈ Td : ek(θ) = 1} is a proper sub-torus, i.e. a compact
subgroup of Td. The assumption implies that Σ ⊂ H, and since H is a
group, Sn ⊂ H, ∀n ≥ 1. This proves that (6) fails.

Since the adjoint operator Q∗µ : Prob(Td) → Prob(Td) satisfies

Q∗µπ = µ ∗ π, denoting by µ∗j := µ ∗ · · · ∗ µ the j-th convolution
power of µ, we have (Q∗µ)nδ0 = µ∗n ∀n ∈ N.

Lemma 4.2. Any sublimit of the sequence πn := 1
n

∑n−1
j=0 µ

∗j is a µ-
stationary measure.

Proof. Given ϕ ∈ C0(Td),

〈Qµϕ− ϕ, πn〉 =
1

n

n−1∑
j=0

〈Qµϕ− ϕ, (Q∗µ)jδ0〉

=
1

n

n−1∑
j=0

(Qj+1
µ ϕ)(0)− (Qjµϕ)(0)

=
1

n
((Qnµϕ)(0)− ϕ(0)) = O(

1

n
).

Hence, if π ∈ Prob(Td) is a sublimit of πn, taking the limit along the
corresponding subsequence of integers we have

〈ϕ,Q∗µπ − π〉 = 〈Qµϕ− ϕ, π〉 = 0,

which implies that Q∗µπ = π. �
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(2) ⇒ (8): By ergodicity of f w.r.t. µN ×m and Birkhoff Ergodic
Theorem, given ϕ ∈ C0(Td) there exists a full measure set of (ω, θ) ∈
ΣN × Td with

lim
n→+∞

1

n

n−1∑
j=0

ϕ(θ + τ j(ω)) =

∫
ϕdm,

where τ j(ω) = ω0 + · · · + ωj−1 and ω = {ωj}j∈N. Hence there exists a
Borel set B ⊂ Td with m(B) = 1 such that, applying the Dominated
Convergence Theorem, we have for all θ ∈ B,

lim
n→+∞

1

n

n−1∑
j=0

(Qjµϕ)(θ) =

∫
ϕdm.

The set B depends on the continuous function ϕ, but since the space
C0(Td) is separable we can choose this Borel set B so that the previous
limit holds for every θ ∈ B and ϕ ∈ C0(Td). This implies the following
weak* convergence in Prob(Td):

lim
n→+∞

1

n

n−1∑
j=0

(Q∗µ)jδθ = m.

Given any θ′ /∈ B take θ ∈ B. Convolving both sides on the right by
δθ′−θ we get

lim
n→+∞

1

n

n−1∑
j=0

(Q∗µ)jδθ′ = lim
n→+∞

1

n

n−1∑
j=0

µ∗j ∗ δθ ∗ δθ′−θ = m ∗ δθ′−θ = m,

which proves (8).
(8) ⇒ (7): If there exists η 6= m in Probµ(Td), then there exists at

least one more ergodic measure ζ 6= m such that ζ is an extreme point
of Probµ(Td). Choosing ϕ ∈ C0(Td) such that

∫
ϕdζ 6=

∫
ϕdm, by

Birkhoff Ergodic Theorem there exists θ ∈ Td such that

lim
n→+∞

1

n

n−1∑
j=0

(Qjµϕ)(θ) =

∫
ϕdζ 6=

∫
ϕdm.

which contradicts (8).
(7) ⇒ (6): Consider the compact subgroup H := ∪n≥1Σn. If (6)

fails then H 6= Td and by Lemma 4.2 we can construct a stationary
measure π ∈ Probµ(Td) with supp(π) ⊂ H. This shows that π 6= m
and hence there is more than one stationary measure. �

In fact, we need stronger conditions than ergodicity of µ to prove
that Q is strongly mixing.
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We move forward step by step. One concept stronger than ergodicity
is mixing.

Definition 4.1. (Q,m) is called mixing if ∀ϕ ∈ C0(T),

Qnϕ(θ)→
∫
ϕdm as n→∞, ∀ θ ∈ T.

It is clear that the mixing of (Q,m) implies the ergodicity of f , like
the similar statement in dynamical systems. Moreover, mixing has
some equivalent characterizations as follows.

Theorem 4.4. The following statements are equivalent.

(1) (Q,m) is mixing.
(2) |µ̂(k)| < 1,∀ k ∈ Z\{0}.
(3) ∀ k ∈ Z\{0}, ∃α 6= β ∈ supp(µ) such that k(α− β) /∈ Z.

Corollary 4.3. If ∃α 6= β ∈ supp(µ) such that β−α /∈ Q, then (Q,m)
is mixing.

Proof. (1) ⇒ (2). If ∃ k ∈ Z\{0} such that |µ̂(k)| = 1, then since
Qnek = µ̂(k)nek, ∀n ∈ N, we have

|Qnek| = |µ̂(k)nek| = 1 9 0 =

∫
ekdm as n→∞.

This contradicts the mixing condition.
(2) ⇒ (1). First step. Let p =

∑N
k=−N ckek be a trigonometric

polynomial. Note that
∫
pdm = c0 and µ̂(0) = 1, so we have

Qnp−
∫
pdm =

∑
0<|k|≤N

ckµ̂(k)nek.

Hence ∥∥∥∥Qnp−
∫
pdm

∥∥∥∥
∞
≤

∑
0<|k|≤N

|ck| |µ̂(k)|n

Let σ = max {µ̂(k) : 0 < |k| ≤ N} < 1. Then∥∥∥∥Qnp−
∫
pdm

∥∥∥∥
∞
≤ 2N ‖p‖∞ σ

n → 0 as n→ 0.

Second step. Given any ϕ ∈ C0(T), ε > 0, by Weierstrass approxima-
tion theorem ∃ p a trigonometric polynomial such that ‖ϕ− p‖∞ < ε.
Moreover, by the first step ∃n ∈ N such that

∥∥Qnp−
∫
pdm

∥∥
∞ < ε.

Writing ϕ = p+ ϕ− p, then

Qnϕ = Qnp+Qn(ϕ− p)
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and ∫
ϕdm =

∫
pdm+

∫
(ϕ− p)dm.

Therefore,∥∥∥∥Qnϕ

∫
ϕdm

∥∥∥∥
∞
≤
∥∥∥∥Qnp−

∫
pdm

∥∥∥∥
∞

+ ‖ϕ− p‖∞ + ‖Qn(ϕ− p)‖∞

≤ ε+ ε+ ε = 3ε.

This proves mixing.
(2) ⇔ (3). It holds if and only if ∃ k ∈ Z\{0}, |µ̂(k)| = 1 ⇔
∃ k ∈ Z\{0}, ∀α 6= β ∈ supp(µ) s.t. e2πikα = e2πikβ. It is further
equivalent to

∣∣∫ e2πikαdµ(α)
∣∣ = 1 if and only if e2πikα is constant for

µ-a.e. α, which this is obvious. �

For the sake of the readers, we give a more general lemma here
clarifying the last part of the proof above. In fact, it will also be used
later.

Lemma 4.4. Let (Ω, ρ) be a probability space. Assume f : Ω → C
is Lebesgue integrable. If

∣∣∫
Ω
fdρ

∣∣ =
∫

Ω
|f | dρ, then arg f is constant

ρ-a.e. In other words, ∃ θ0 ∈ R such that f(x) = eiθ0 |f(x)| for ρ-a.e.
x ∈ Ω.

Proof. By assumptions,
∫

Ω
fdρ ∈ C. Let θ0 := arg(

∫
Ω
fdρ). Then∫

Ω

fdρ = eiθ0
∣∣∣∣∫

Ω

fdρ

∣∣∣∣ .
Then,

0 =

∣∣∣∣∫
Ω

fdρ

∣∣∣∣− ∫
Ω

fdρ

=e−iθ0
∫

Ω

fdρ−
∫

Ω

|f | dρ

=

∫
[e−iθ0f −

∣∣e−iθ0f ∣∣]dρ
=<

∫
Ω

[e−iθ0f −
∣∣e−iθ0f ∣∣]dρ

=

∫
Ω

[<(e−iθ0f)−
∣∣e−iθ0f ∣∣]dρ

≤0.
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This implies <(e−iθ0f) =
∣∣e−iθ0f ∣∣ ≥ 0, ρ-a.e. In particular, =(e−iθ0f) =

0, ρ-a.e. Therefore,

e−iθ0f = <(e−iθ0f) =
∣∣e−iθ0f ∣∣ = |f | , ρ-a.e.

which gives f = eiθ0 |f |, ρ-a.e. �

In the following, we are going to prove two propositions in which Q
is strongly mixing with different rates under different assumptions of
the measure µ ∈ Prob(T). It turns out that µ being mixing is also
not enough for our purpose. So we will consider the so-called mixing
Diophantine measures (to be defined later) and absolutely continuous
measures. In fact, absolute continuity implies mixing Diophantine, but
to warm-up, let us first assume that µ � m ⇔ dµ = hdm with h ≥ 0
and

∫
hdm = 1.

Lemma 4.5. If µ � m then ∃σ0 ∈ (0, 1) such that |µ̂(k)| ≤ σ0,∀ k ∈
Z\{0}.

Proof. By definition, µ̂(k) =
∫
e2πikxdµ(x). Then by Lemma 4.4, we

have µ̂(k) < 1, ∀ k ∈ Z\{0}. Otherwise e2πikx = e2πikθ0 for some θ0 ∈
T, µ-a.e. which contradicts µ� m (by Riemann-Lebesgue).

Since µ� m, by Riemann-Lebesgue we have

|µ̂(k)| =
∣∣∣ĥ(−k)

∣∣∣→ 0 as |k| → ∞.

Hence ∃N ∈ N such that |µ̂(k)| ≤ 1
2
,∀ |k| > N . Let

σ0 := max

{
1

2
, |µ̂(j)| : 0 < |j| ≤ N

}
< 1.

Then µ̂(k) ≤ σ0,∀ k ∈ Z\{0}. �

With this lemma in hand, we can prove the following proposition.

Proposition 4.6. If µ � m, then Q is strongly mixing with expo-
nential rate on any space of Hölder continuous functions Hα(T), ∀α ∈
(0, 1). That is, ∃C <∞, σ ∈ (0, 1) such that∥∥∥∥Qnϕ−

∫
ϕdm

∥∥∥∥
∞
≤ C ‖ϕ‖α σ

n, ∀ϕ ∈ Hα(T).

In fact, σ = σ0
α.

Before we formally give the proof, we first describe the attempt to
prove it.
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Recall that ek(θ) = e2πikθ, hence Qek = µ̂(k)ek and Qnek = µ̂(k)nek.
If we write ϕ ∈ Hα(T) as a Fourier series

ϕ =
∞∑

k=−∞

ϕ̂(k)ek.

Then

Qnϕ =
∞∑

k=−∞

ϕ̂(k)µ̂(k)nek =
∑
k 6=0

ϕ̂(k)µ̂(k)nek +

∫
ϕdm.

Then (we hope to have)∥∥∥∥Qnϕ−
∫
ϕdm

∥∥∥∥
∞
≤
∑
k 6=0

|ϕ̂(k)| |µ̂(k)|n .

In general this is not allowed because the infinity sum is not necessarily
absolutely convergent.

Since µ� m, |µ̂(k)| ≤ σ0 < 1,∀ k 6= 0. We have∥∥∥∥Qnϕ−
∫
ϕdm

∥∥∥∥
∞
≤ σn0

∑
k 6=0

|ϕ̂(k)| .

There is still a problem of an infinite sum which may not converge
unless we assume some sufficient conditions like ϕ ∈ C1+ε. However,
we want to deal with less regularities like Lipschitz and Hölder. There-
fore, we really have to change our minds and use approximations of
trigonometric polynomials. Let us start the formal proof.

Proof. Fix n to be the number of “iterations”. Let N be the degree
of approximation which will be chosen later. Since ϕ ∈ Hα(T), by
Theorem 4.2, there exists pN trigonometric polynomial of deg pN ≤ N
such that ‖ϕ− pN‖∞ . ‖ϕ‖α

1
Nα . In fact, pN is the convolution of ϕ

with the Jackson kernel,

pN =
N∑

k=−N

ckek, |ck| ≤ |ϕ̂(k)| . ‖ϕ‖α
1

|k|α
.

Therefore, we can write ϕ = pN + (ϕ− pN) := pN + rN . So by linearity
we have

Qnϕ = QnpN +QnrN

and ∫
ϕdm =

∫
pNdm+

∫
rNdm.
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Thus

Qnϕ−
∫
ϕdm = QnpN −

∫
pNdm+QnrN −

∫
rNdm,

which shows that∥∥∥∥Qnϕ−
∫
ϕdm

∥∥∥∥
∞
≤
∥∥∥∥QnpN −

∫
pNdm

∥∥∥∥
∞

+ ‖QnrN‖∞ +

∫
|rN | dm.

Due to the estimates on rN , the second and third term in the r.h.s. are
smaller than C ‖ϕ‖α

1
Nα for some constant C > 0. So let us estimate

the first term. Since pN =
∑N

k=−N ckek,

QnpN =
N∑

k=−N

ckµ̂(k)nek.

This implies∥∥∥∥QnpN −
∫
pNdm

∥∥∥∥
∞
≤

∑
0<|k|≤N

|ck| |µ̂(k)|n . ‖ϕ‖α σ
n
0N

1−α.

Combining the estimates above, we have∥∥∥∥Qnϕ−
∫
ϕdm

∥∥∥∥
∞
. ‖ϕ‖α [σn0N +

1

Nα
].

Choose N ∈ N such that σn0N
1−α = 1

Nα . Thus

N = (
1

σ0

)n,

hence

N−α = [σα0 ]n

Take σ := σα0 , we conclude the proof. �

Remark 4.3. If we consider Td,∀ d ≥ 1, then similar computation
yields σ = σ0

α
d .

Up to now, we know that

(1) if µ� m, then |µ̂(k)| ≤ σ0 < 1,∀ k ∈ Z\{0}.
(2) if (Q,m) is mixing, then |µ̂(k)| < 1,∀ k ∈ Z\{0}.

For item (1), we already proved Proposition 4.6. However, it turns
out that in order to obtain a similar but weaker proposition, (2) is
not enough. For our purpose, we shall introduce the notion of mixing
Diophantine.
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Definition 4.2. We say µ ∈ Prob(T) satisfies a mixing Diophantine
Condition (mixing DC) if

|µ̂(k)| ≤ 1− γ

|k|τ
, ∀ k ∈ Z\{0},

for some γ, τ > 0.

This is inspired by the concept of the Diophantine Condition (DC)
for numbers. We say that α ∈ [0, 1) satisfies the Dionphantine Condi-
tion DC(γ, τ) if

inf
j∈Z
|kα− j| ≥ γ

|k|τ
, ∀ k ∈ Z\{0}.

Note that here γ > 0 but τ > 1. This is because when τ = 1, DC(γ, τ)
is of Lebesgue measure zero. If τ < 1, DC(γ, τ) is empty. For the
mixing DC, any τ > 0 is fine (because the space of probability measures
on T is infinite dimensional).

We give some examples regarding mixing DC measures.

(1) If µ� m, then µ is mixing DC with any τ ≥ 0.
(2) If µ = δα then µ̂(k) =

∫
e2πikxdδα(x) = e2πikα. This shows

|µ̂(k)| ≡ 1,∀ k ∈ Z which implies that δα is not mixing (DC).
(3) If µ = tδα + (1− t)δβ with t ∈ (0, 1) and β −α ∈ DC, then µ is

mixing DC.
(4) If µ ∈ Prob(T) is finitely supported such that ∃α, β ∈ supp(µ)

such that β − α ∈ DC, then µ is mixing DC.
(5) If µ1 is mixing DC, for any t ∈ (0, 1] and µ2 ∈ Prob(T), µ :=

tµ1 + (1− t)µ2 is mixing DC.

Note that (5) implies that mixing DC measures are prevalent.
Now we can formulate our second proposition.

Proposition 4.7. If µ is mixing DC with parameters γ and τ , then Q
is strongly mixing with power rate on any space of Hölder continuous
functions Hα(T). More precisely, ∃C <∞, p > 0 such that∥∥∥∥Qnϕ−

∫
ϕdm

∥∥∥∥
∞
≤ C ‖ϕ‖α

1

np
, ∀ϕ ∈ Hα(T), n ∈ Z+.

In fact, p can be chosen as close as we want to α
τ

from below.

Proof. The proof is exactly along the same line as that of Proposition
4.6. So we borrow the same notations: n, N , pn, rn from there. More-
over, given the other parameters γ, τ and α, we just need to consider
the case when n and N are sufficiently large.
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Write ϕ = pn + (ϕ− pn), the same argument yields∥∥∥∥Qnϕ−
∫
ϕdm

∥∥∥∥
∞
≤
∥∥∥∥QnpN +

∫
pNdm

∥∥∥∥
∞

+ ‖QnrN‖∞ +

∫
|rN | dm.

The last two terms are again bounded by C ‖ϕ‖α
1
Nα for some constant

C > 0. The difference is on the first term. Now we have∥∥∥∥QnpN −
∫
pNdm

∥∥∥∥
∞
≤

∑
0<|k|≤N

|ck| |µ̂(k)|n . ‖ϕ‖α
∑

0<|k|≤N

1

|k|α
(1− γ

|k|τ
)n.

Using the inequality (1− x)
1
x ≤ e−1, x > 0, we have

(1− γ

|k|τ
)n ≤ (1− γ

N τ
)n ≤ e−

nγ
Nτ .

We have to make 1
Nα = N1−α · e− nγ

Nτ , thus we can take for example

N = (nγ)
9

10τ

such that

1

Nα
≈ n−

9α
10τ , N · e−

nγ
Nτ ≈ n

9
10τ · e−(nγ)

1
10 � n−

9α
10τ .

In the end we have∥∥∥∥QnpN −
∫
pNdm

∥∥∥∥
∞
≤ C ‖ϕ‖α

1

np

with p = 9α
10τ

. Adjusting the parameter 9
10

closer and closer to 1, we
get p↗ α

τ
. �

Remark 4.4. If we consider Td,∀ d ≥ 1, then similar computation
yields the same estimate p↗ α

τ
as polynomial growth is nothing com-

pared with exponential decay! This shows that in any dimension d,
our result is strictly stronger than Bence Borda’s Theorem 4. That
is, for any discrete measure µ, we can get central limit theorem if we
assume α > τ = d

r
⇔ αr > d where r ∈ Z+ is the number of badly

approximated elements in the support of µ, while he requires αr > 2d.

4.3. Statistical properties for mixed systems. Let µ ∈ Prob(T)
and let K : T→ Prob(T), Kθ =

∫
δθ+ω0dµ(ω0) be the Markov kernel.

Q : C0(T)→ C0(T), Qϕ(θ) =
∫
ϕ(θ+ω0)dµ(ω0) is the corresponding

Markov operator.
θ → θ + ω0 → θ + ω0 + ω1 → · · · is the K-Markov chain where we

can denote Z0 = θ, Zj = θ + ω0 + · · · + ωj−1, j ∈ Z+ in which each ωi
is chosen independently w.r.t. µ.
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We have proved that if µ is mixing DC, then (T, K,m,Cα(T)) is a
strongly mixing Markov system with decaying rate rn = 1

np
, n ∈ Z+

and p = α
τ
−.

By the abstract LDT Theorem 2.1 of CDK, we have

Corollary 4.8. ∀ϕ ∈ Cα(T), ∀ θ ∈ T and ∀ ε > 0, we have

µN
{∣∣∣∣ 1n [ϕ(θ) + · · ·+ ϕ(θ + · · ·+ ωn−1)]−

∫
ϕdm

∣∣∣∣ > ε

}
< e−c(ε)n.

for some constant c(ε) > 0.

By the abstract CLT Theorem 2.2 of Gordin-Livšic, we have

Corollary 4.9. If α > τ so that p > 0 then ∀ϕ ∈ Cα(T) with zero
mean, then if σ(ϕ) > 0 then

Snϕ

σ
√
n

d−→ N (0, 1) .

Recall that we also have a slightly more general setup. Let Σ := T,
on Σ× T consider the Markov kernel

K̄(ω0,θ) :=

∫
δ(ω1,θ+ω0)dµ(ω1)

and the corresponding Markov operator Q̄ : C0(Σ× T)→ C0(Σ× T)

Q̄ϕ(ω0, θ) =

∫
ϕ(ω1, θ + ω0)dµ(ω1).

The K̄-Markov chain is

(ω0, θ)→ (ω1, θ + ω0)→ (ω2, θ + ω0 + ω1)→ · · ·
Define Π : C0(Σ × T) → C0(T), Πϕ(θ) =

∫
ϕ(ω0, θ)dµ(ω0). It is

clear that Q̄ϕ(ω0, θ) = Πϕ(θ + ω0). By induction,

Q̄nϕ(ω0, θ) = Qn−1(Πϕ)(θ + ω0).

Define the space C0,α(Σ× T)) as follows:

C0,α(Σ× T)) :=
{
ϕ ∈ C0(Σ× T) : vTα(ϕ) <∞

}
where

vTα(ϕ) := sup
ω0∈Σ

sup
θ 6=θ′

|ϕ(ω0, θ)− ϕ(ω0, θ
′)|

|θ − θ′|
.

The corresponding α-norm is defined by ‖ϕ‖α = ‖ϕ‖∞ + vTα(ϕ). Then
(Σ × T, K̄, µ ×m,C0,α(Σ × T)) is a Markov system (simple exercise).
Since Q is strongly mixing on Cα(T), then Q̄ is strongly mixing on
C0,α(Σ × T) with the same decaying rate rn = 1

np
, n ∈ Z+, because
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ΠC0,α(Σ× T) ⊂ Cα(T). So we get LDT and (if α > τ) CLT. One can
formulate them mimicing the previous two corollaries.

Nevertheless, our ultimate goal is to prove LDT and CLT for the
mixed random-quasiperiodic system with Hölder observables. Let Σ :=
T, µ ∈ Prob(T), X := ΣZ, µZ ∈ Prob(X). Define

f : X × T→ X × T, f(ω, θ) = (σω, θ + ω0).

The triple (X × T, f, µZ ×m) is called a mixed random-quasiperiodic
system.

We say ϕ ∈ Hα(X × T) if vα(ϕ) = vXα (ϕ) + vTα(ϕ) <∞ where

vXα (ϕ) := sup
θ∈T

sup
ω 6=ω′

|ϕ(ω, θ)− ϕ(ω′, θ)|
d(ω, ω′)α

.

and

vTα(ϕ) := sup
ω∈X

sup
θ 6=θ′

|ϕ(ω, θ)− ϕ(ω, θ′)|
|θ − θ′|α

.

Note that vα is a semi-norm. Here ω, ω′ ∈ X and

d(ω, ω′) := 2−min{|j|:ωj 6=ω′j}.

Remark 4.5. Note that in general this metric does not make (X, d) a
compact metric space unless µ is finitely supported. The essential rea-
son is that this metric only shows the information of where two points
differ without telling how much they differ, which does not metrize
the product topology. However, results under this metric are stronger
because they also hold for functions which are not necessarily Hölder
with respect to the standard compactified metric.

Then we can define the norm

‖ϕ‖α := vα(ϕ) + ‖ϕ‖∞ .
Then (Hα(X × T), ‖·‖α) is a Banach space.

Consider the corresponding Markov chain on X × T
(ω, θ)→ (σω, θ + ω0)→ (σ2ω, θ + ω0 + ω1)→ · · ·

This is not strongly mixing because it is determined. So we can not de-
rive LDT and CLT directly from the two abstract theorems by strongly
mixing condition. We have to find a way around.

To proceed, first we consider observables that are future independent

ϕ(· · · , ω−1, ω0, · · · ) = ϕ(· · · , ω−1, ω0), ∀ω ∈ X.
Namely, ϕ ∈ Hα(X− × T) which is similarly defined as Hα(X × T)
above. With an appropriate kernel K−, the corresponding Markov
kernel will be strongly mixing on Hα(X− × T) (essentially because
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(X−×T, K−, µ−N ×m,Hα(X−×T)) is an extension of (Σ×T, K̄, µ×
m,Hα(Σ× T)).

Moreover, If ϕ ∈ Hα(X ×T), it turns out that it is cohomologous to
a ϕ− ∈ Hα(X− × T) in the sense that

ϕ− ϕ− ◦ f = η − η ◦ f

for some η ∈ Hβ
α(X × T) with some β < α. This will allow us to lift

the LDT estimates.
So let us first focus on the future independent mixed system. Let

Σ := T, X− := Σ−N = {ω− = {ωj}j≤0 : ωj ∈ Σ} endowed with the
distance d defined before. Denote by µ−N the product measure.

The Markov kernel K− on X− × T is defined by

K−(ω−,θ) =

∫
δ(ω−ω1,θ+ω0)dµ(ω1)

and the corresponding Markov operator Q− on C0(X− × T) is

Q−ϕ(ω−, θ) =

∫
ϕ(ω−ω1, θ + ω0)dµ(ω1).

The associated Markov chain is

(ω−, θ)→ (ω−ω1, θ + ω0)→ (ω−ω1ω2, θ + ω0 + ω1)→ · · ·

The space of α-Hölder observables, denoted by Hα(X− × T), is de-
fined as

Hα(X− × T) :=
{
ϕ ∈ C0(X− × T) : vα(ϕ) := vX

−

α (ϕ) + vTα(ϕ) <∞
}

where

vX
−

α (ϕ) := sup
θ∈T

sup
ω− 6=ω′−

|ϕ(ω−, θ)− ϕ(ω′−, θ)|
d(ω−, ω′−)α

.

and

vTα(ϕ) := sup
ω−∈X−

sup
θ 6=θ′

|ϕ(ω−, θ)− ϕ(ω−, θ′)|
|θ − θ′|α

.

The norm is defined by ‖ϕ‖α := ‖ϕ‖∞ + vα(ϕ). Moreover, (Hα(X− ×
T), ‖·‖α) is a Banach space.

For the sake of convenience, we recall the definition of Markov sys-
tems which was introduced previously in Section 2.

Definition 4.3. A Markov system is a tuple (M,K, µ,E) where

(1) M is a compact metric space,
(2) K : M → Prob(M) is an SDS,
(3) µ = K ∗ µ :=

∫
Kx dµ(x) ∈ Prob(M) is a stationary measure,
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(4) E = (E, ‖·‖E) is a Banach subspace of C0(M) such that action
of QK on E and the inclusion E ⊂ L∞(M) are both continuous.
In other words there are constants M1 <∞ and M2 <∞ such
that ‖ϕ‖∞ ≤M1 ‖ϕ‖E and ‖Qϕ‖E ≤M2 ‖ϕ‖E, for all ϕ ∈ E.

Remark 4.6. When E = C0(M) condition (4) follows from (1)-(3).

Proposition 4.10. (X−×T, K−, µ−N×m,Hα(X−×T)) is a Markov
system.

Proof. Given ϕ ∈ C0(X− × T), it is indeed uniformly continuous due
to the compactness of X− × T. Therefore, for any ε > 0, we can take
δ > 0 to be sufficiently small such that d((x, θ), (y, η)) < δ implies
|ϕ(x, θ)− ϕ(y, η)| < ε.

Therefore, if d((x, θ), (y, η)) < δ/4 we have

|(QK−ϕ)(x, θ)− (QK−ϕ)(y, η)|

≤ |
∫
ϕ(xs, θ + x0)dµ(s)−

∫
ϕ(ys, η + y0)dµ(s)| ≤ ε ,

which proves that QK−ϕ ∈ C0(X− × T) and K− is an SDS.
Every measurable set V ⊂ X−×T can be approximated in measure

by countable unions of cylinders, i.e., measurable sets having the form
Ai ×Bi with Ai ⊂ X− and Bi ⊂ T. Direct computation shows(

K− ∗ (µ−N ×m)
)

(Ai ×Bi) =

∫
K−(x,θ)(Ai ×Bi) d(µ−N ×m)(x, θ)

=

∫∫
K−(x,θ)(Ai ×Bi) dµ

−N(x)dm(θ)

=

∫∫
δ(xs,θ+x0)(Ai ×Bi) dµ(s)dµ−N(x)dm(θ)

=

(∫
δy(Ai) dµ

−N(y)

)(∫
δθ+x0(Bi) dm(θ)

)
=
(
µ−N ×m

)
(Ai ×Bi)

holds for any Ai × Bi. Thus it also holds for any measurable set V ⊂
X− × T. This proves that µ−N ×m is a K−-stationary measure.

Item (4) of Definition 4.3 is straightforward to check and it holds
with M1 = M2 = 1. �

Our current goal is to prove that (X− × T, K−, µ−N ×m,Hα(X− ×
T)) is strongly mixing with rate 1

np
, p = α

τ
−. We showed that (Σ ×

T, K̄, µ×m,Cα(Σ× T)) is strongly mixing with rate 1
np
, p = α

τ
−. We

will prove that (Σ × T, K̄, µ × m,Cα(Σ × T)) is a contracting factor
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of (X− × T, K−, µ−N × m,Hα(X− × T)), which allows us to lift the
strongly mixing property from K̄ to K−.

We first introduce the definition of factor.

Definition 4.4. Given two Markov systems (M,K, µ,E) and (M̃, K̃, µ̃, Ẽ),
the first is called a factor of the second if there exists a continuous pro-
jection π : M̃ →M such that

(1) π∗µ̃ = µ,
(2) Kπ(x̃) = π∗K̃x̃ for all x̃ ∈ M̃ ,

(3) there exists η : M → M̃ continuous with π ◦ η = idM such that

η∗(Ẽ) ⊆ E and ‖ϕ ◦ η‖E ≤M1 ‖ϕ‖Ẽ for some constant M1 <∞
and all ϕ ∈ Ẽ,

(4) π∗(E) ⊆ Ẽ and ‖ϕ ◦ π‖Ẽ ≤M2 ‖ϕ‖E for some constant M2 <∞
and all ϕ ∈ E.

Factors have the following properties.

Proposition 4.11. Let (M,K, µ,E) be a factor of (M̃, K̃, µ̃, Ẽ).

(1) π∗ ◦ QK = QK̃ ◦ π∗, i.e. the following commutative diagram
holds

C0(M̃)
QK̃−−−→ C0(M̃)

π∗

x xπ∗
C0(M) −−−→

QK
C0(M)

.

(2) The bounded linear map π∗ : E→ π∗(E) is an isomorphism onto

the closed linear subspace π∗(E) ⊆ Ẽ.

Proof. Since Kπ(x̃) = π∗K̃x̃,

(QK̃ ◦ π
∗ϕ)(x̃) =

∫
ϕ ◦ πdK̃x̃ =

∫
ϕdKπ(x̃) = (π∗ ◦QKϕ)(x̃)

which gives item (1).
Let us prove item (2). By definition, π∗ϕ = ϕ ◦ π is a bounded

linear operator. Since π is surjective, then π∗ is one to one. Thus
π∗ : E → π∗(E) is a linear bijection. Define the closed linear subspace

of Ẽ

V := {ϕ ∈ Ẽ : ∀x, y ∈ M̃, π(x) = π(y)⇒ ϕ(x) = ϕ(y)}.

The linearity is clear. For the closedness, assume that ϕ̃n ∈ V and
ϕ̃n → ϕ̃ pointwise in Ẽ. If π(x) = π(y), then ϕ̃n(x̃) = ϕ̃n(ỹ). Therefore,

let n→∞ we get ϕ̃(x̃) = ϕ̃(ỹ) with ϕ̃ ∈ Ẽ, which shows that ϕ̃ ∈ V .
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Clearly π∗(E) ⊆ V . Conversely, given ϕ ∈ V consider the function
ψ := ϕ ◦ η ∈ E where η : M → M̃ is defined in Definition 4.4. Since
π(x) = π(η(π(x))), by definition of V we have ϕ(x) = ϕ(η(π(x))) for
all x ∈ M̃ , which proves ϕ = ψ ◦ π ∈ π∗(E). Therefore, V = π∗(E) is

a closed linear subspace of Ẽ, thus also a Banach (sub) space with the

prescribed norm on Ẽ. Finally, by the Banach open mapping theorem
π∗ is an open map. Namely, the inverse map (π∗)−1 : π∗(E) → E is
continuous, thus also a bounded linear map. This proves that π∗ is an
isomorphism. �

We introduce the notion of contracting factors.

Definition 4.5. We call (M,K, µ,E) a contracting factor of (M̃, K̃, µ̃, Ẽ)
with contracting rate τ if additionally we have the following: ∃C > 0
such that ∀ ϕ̃ ∈ Ẽ, ∃ψn ∈ E, n ∈ N satisfying

‖ψn‖∞ ≤ ‖ϕ̃‖∞ , ‖ψn‖E ≤ C ‖ϕ̃‖Ẽ
and ∥∥∥Q̃nϕ̃− π∗ψn

∥∥∥
∞
≤ C ‖ϕ̃‖Ẽ τ(n)

for all n ∈ N.

We have the following abstract theorem.

Theorem 4.5. Assume that (M,K, µ,E) is strongly mixing with rate

r and that (M,K, µ,E) is a contracting factor of (M̃, K̃, µ̃, Ẽ) with

contracting rate τ . Then (M̃, K̃, µ̃, Ẽ) is strongly mixing with rate
r∗(n) = max{r(n

2
), τ(n

2
)}.

Proof. Fix ϕ̃ ∈ Ẽ and n ∈ N. We may assume that n is even. Otherwise
since Q̃nϕ̃ = Q̃n−1(Q̃ϕ̃), we can work with Q̃ϕ̃ instead of ϕ̃. For this ϕ̃
and n

2
, consider ψn

2
=: ψ ∈ E such that

‖ψ‖∞ ≤ ‖ϕ̃‖∞ , ‖ψ‖E . ‖ϕ̃‖Ẽ
and ∥∥∥Q̃n

2 ϕ̃− π∗ψ
∥∥∥
∞
. ‖ϕ̃‖Ẽ τ(

n

2
).

Since µ̃ is K̃-stationary, then∫
Q̃jϕ̃dµ̃ =

∫
ϕ̃dµ̃,∀ j ∈ N.

As π∗µ̃ = µ, we have ∫
π∗ψdµ̃ =

∫
ψdµ.
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Then by an integration on both sides of the previous inequality, we
obtain ∣∣∣∣∫ ϕ̃dµ̃−

∫
ψdµ

∣∣∣∣ . ‖ϕ̃‖Ẽ τ(
n

2
).

Using that (M,K, µ,E) is strongly mixing with rate r, we have∥∥∥∥Qn
2ψ −

∫
ψdµ

∥∥∥∥
∞
. ‖ψ‖E r(

n

2
) . ‖ϕ̃‖Ẽ r(

n

2
).

On the other hand, by the commutative diagram we have

Q̃
n
2 π∗ψ = π∗Q

n
2ψ.

Treating
∫
ψdµ as a constant function, we have π∗(

∫
ψdµ) =

∫
ψdµ.

Thus∥∥∥∥Q̃n
2 π∗ψ −

∫
ψdµ

∥∥∥∥
∞

=

∥∥∥∥π∗Q̃n
2ψ − π∗(

∫
ψdµ)

∥∥∥∥
∞
. ‖ϕ̃‖Ẽ r(

n

2
).

Finally, note that

Q̃nϕ̃−
∫
ϕ̃dµ̃ = Q̃nϕ̃−Q̃

n
2 (π∗ψ)+Q̃

n
2 (π∗ψ)−

∫
ψdµ+

∫
ψdµ−

∫
ϕ̃dµ̃.

Thus by triangle inequality,∥∥∥∥Q̃nϕ̃−
∫
ϕ̃dµ̃

∥∥∥∥ . ‖ϕ̃‖Ẽ (τ(
n

2
) + r(

n

2
) + τ(

n

2
)
)
.

The result follows. �

We will apply this abstract result to the following setting: the factor
(M,K, µ,E) will be (Σ × T, K̄, µ ×m,C0,α(Σ × T)). We have proved
that this system is strongly mixing with rate r(n) = 1

np
, p > 0 pro-

vided that the measure µ is mixing DC. Actually we proved this for
(T, K,m,Cα(T)). On the other hand, the system (M̃, K̃, µ̃, Ẽ) will be
(X− × T, K−, µ−N ×m,Hα(X− × T)).

Theorem 4.6. (Σ× T, K̄, µ×m,C0,α(Σ× T)) is a contracting factor
with exponential rate of (X−×T, K−, µ−N×m,Hα(X−×T)). Therefore,
the second is strongly mixing with rate 1

np
.

Proof. Define π : X−×T→ Σ×T, π(ω−, θ) = (ω0, θ). Fix a ∈ Σ, define
η : Σ × T → X− × T, η(ω0, θ) = (· · · aaω0, θ). It is straightforward to
check items (1)-(4) in Definition 4.4, thus the first system is a factor of
the second. Let us prove that it is indeed a contracting factor.

Fix n ∈ N, denote by Hα,n(X− × T) the functions in Hα(X− × T)
that only depend on last n random coordinates ω−n+1, · · · , ω−1, ω0 and
θ.
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If ϕ ∈ Hα,n(X− × T), then

(Q−)nϕ(ω−, θ) =

∫
· · ·
∫
ϕ(ω−ω1 · · ·ωn, θ+ω0+· · ·+ωn−1)dµ(ωn) · · · dµ(ω1)

only depends on (ω0, θ), so (Q−)nϕ(ω−, θ) ∈ C0,α(Σ× T).
Fix any ϕ ∈ Hα(X−×T) and n ∈ N, we construct ψn ∈ C0,α(Σ×T)

in the following. Let

ϕn(ω−, θ) = ϕ(· · · aaω−n+1 · · ·ω0, θ).

and denote in(ω−, θ) = (· · · aaω−n+1 · · ·ω0, θ). So ϕn ∈ Hα,n(X− × T).
We have proved that the bounded linear map π∗ : E → π∗(E) is an

isomorphism onto the closed linear subspace π∗(E) ⊆ Ẽ. So let ψn ∈
C0,α(Σ× T) be such that

π∗ψn = ψn ◦ π = (Q−)nϕn.

Then ∥∥(Q−)n(ϕ)− ψn ◦ π
∥∥
∞

=
∥∥(Q−)n(ϕ)− (Q−)nϕn

∥∥
∞

≤‖ϕ− ϕn‖∞
= sup

(ω−,θ)∈X−×T

∣∣ϕ(ω−, θ)− ϕ(in(ω−, θ))
∣∣

≤vX−α (ϕ)d
(
ω−, (· · · aaω−n+1 · · ·ω0)

)α
≤2−nα ‖ϕ‖α .

Let σ = 2−α < 1, we conclude the proof by applying Theorem 4.5. �

Fix any ϕ ∈ Hα(X− × T) and (ω−, θ) ∈ X− × T, consider the K−

Markov chain {Zn}n≥0 such that

Z0 = (ω−, θ), Z1 = (ω−ω1, θ + ω0), · · · ,
Zn = (ω−ω1 · · ·ωn, θ + ω0 + · · ·+ ωn−1), · · ·

Denote by Snϕ = ϕ(Z0) + · · ·+ ϕ(Zn−1).
By the abstract LDT Theorem 2.1, we have

P(ω−,θ)

{∣∣∣∣ 1nSnϕ−
∫
X−×T

ϕdµ−N ×m
∣∣∣∣ > ε

}
. e−c(ε)n.

It implies that

Pµ−N×m

{∣∣∣∣ 1nSnϕ−
∫
X−×T

ϕdµ−N ×m
∣∣∣∣ > ε

}
. e−c(ε)n.

On the other hand, consider the probability space (X × T, µZ ×m).
Define f : X×T→ X×T, f(ω, θ) = (σω, θ+ω0) and define π : X×T→
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X− × T, π(ω, θ) = (ω−, θ). Then for every Z0 = (ω−, θ) ∈ X− × T
chosen according to µ−N ×m, we have Z0 = π(ω, θ) with (ω, θ) =: Z̄0

chosen according to µZ ×m. In fact π∗(µ
Z ×m) = µ−N ×m.

Therefore, for every Zj, j ≥ 0 which takes value in X− ×T, we have
Zj = π[f j(Z̄0)]. This shows that the previous inequality is equivalent
to the following:

µZ×m

{
(ω, θ) :

∣∣∣∣∣ 1n
n−1∑
j=0

ϕ ◦ π[f j(ω, θ)]−
∫
X−×T

ϕdµ−N ×m

∣∣∣∣∣ > ε

}
. e−c(ε)n

If α > τ , we also get the central limit theorem by the abstact CLT
Theorem 2.1.

We want to extend these statistical properties to observables that
also depend on the future. In fact, we want to obtain similar results
of the Markov system (X × T, f, µZ ×m,Hα(X × T)) (defined before
already) in which the Markov operator is exactly the Koopman opera-
tor: QK(ϕ) = ϕ ◦ f and K is the dirac delta. This Koopman operator
is no longer strongly mixing.

Given ϕ ∈ C0(X × T) and (ω, θ) ∈ X × T, the Birkhoff sums are

Snϕ(ω, θ) = ϕ(ω, θ) + ϕ ◦ f(ω, θ) + · · ·+ ϕ ◦ fn−1((ω, θ)).

Remark 4.7. We will identify Hα(X− × T) with the subspace of ob-
servables in Hα(X ×T) that are future independent. ϕ is called future
independent if ϕ(x, θ) = ϕ(y, θ) whenever x− = y−.

The idea of proving LDT, CLT for the DDS (X×T, f) is to “reduce”
an observable ϕ ∈ Hα(X × T) to an observable ϕ− ∈ Hβ(X− × T).
More precisely, we will prove the following proposition.

Proposition 4.12. ∀ϕ ∈ Hα(X × T), there are ϕ− ∈ Hβ(X− × T)
and η ∈ Hβ(X × T) with β = α

3
such that

ϕ− ϕ− ◦ f = η − η ◦ f. (4.1)

Moreover, the map ϕ → ϕ− is a bounded linear operator, ‖ϕ−‖β .
‖ϕ‖α.

Let us assume for now that this proposition is valid and then we can
derive the LDT and CLT for (X × T, f).

Integrating both sides of the equation (4.1) w.r.t. µZ ×m, we have∫
ϕdµZ ×m−

∫
ϕ− ◦ fdµZ ×m =

∫
ηdµZ ×m−

∫
η ◦ fdµZ ×m.

Since µZ×m is f -invariant, the right hand side equals zero. This shows∫
ϕdµZ ×m =

∫
ϕ− ◦ fdµZ ×m =

∫
ϕ−dµZ ×m =

∫
ϕ−dµ−N ×m.



84 A. CAI, P. DUARTE, AND S. KLEIN

At the same time, equation (4.1 is equivalent to

ϕ = ϕ− ◦ f + η − η ◦ f.

For LDT, taking the Birkhoff sums on both sides, we obtain

Snϕ = Sn(ϕ− ◦ f) + η − η ◦ fn,

which further implies that

1

n
Snϕ−

∫
ϕdµZ ×m =

1

n
Sn(ϕ− ◦ f)−

∫
ϕ−dµ−N ×m+

η − η ◦ fn

n

≈ 1

n
Sn(ϕ−)−

∫
ϕ−dµ−N ×m

as n is large. This shows the equivalence of the LDT estimates between
(X×T, f, µZ×m,Hα(X×T)) and (X−×T, K−, µ−N×m,Hβ(X−×T)).
In particular, we can lift the LDT estimates from the second system to
the first one.

For CLT (we need α > 3τ such that β/τ > 1), since we have

Snϕ−
∫
ϕdµZ ×m = Sn(ϕ− ◦ f)−

∫
ϕ−dµ−N ×m+ η − η ◦ fn,

dividing at both sides by σ
√
n with σ > 0 we have

Snϕ−
∫
ϕdµZ ×m

σ
√
n

=
Sn(ϕ− ◦ f)−

∫
ϕ−dµ−N ×m

σ
√
n

+
η − η ◦ fn

σ
√
n

.

This shows the equivalence of the CLT between (X×T, f, µZ×m,Hα(X×
T)) and (X− × T, K−, µ−N ×m,Hβ(X− × T)). Namely,

Sn(ϕ−)−
∫
ϕ−dµ−N ×m

σ
√
n

d−→ N (0, 1),

if and only if

Snϕ−
∫
ϕdµZ ×m

σ
√
n

d−→ N (0, 1).

Therefore, it remains to prove Proposition 4.12. Before that, let us
make some preparations regarding the concepts of continuous disinte-
gration and unstable holonomy.

Let π : X × T → X− × T, π(ω, θ) := (ω−, θ) be the standard pro-
jection. For ω ∈ X, we will write ω = (ω−;ω+) where ω− ∈ X− and
ω+ ∈ X+ := ΣN+

.
Obviously, we have π∗(µ

Z ×m) = µ−N ×m.
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Definition 4.6. Let (M̃, µ̃) and (M,µ) be measurable spaces. Assume
that M̃ and M are compact metric spaces and π : M̃ →M is continu-
ous with π∗µ̃ = µ. A continuous disintegration of µ̃ over π is a family
of probability measures {µ̃a}a∈M such that

(1) µ̃a ∈ Prob(M̃) and µ̃a(π
−1{a}) = 1,

(2) M 3 a 7→ µ̃a ∈ Prob(M̃) is continuous,
(3) ∀ϕ ∈ C0(M̃),∫

M̃

ϕdµ̃ =

∫
M

(

∫
π−1{a}

ϕdµ̃a)dµ(a).

For any (ω−, θ) ∈ X− × T, let

P(ω−,θ) := δω− × µN+ × δθ ∈ Prob(X × T).

Then clearly we have {P(ω−,θ)}(ω−,θ)∈X−×T is a continuous disintegration
of P = µZ ×m along π. Moreover, for (ω−, θ) ∈ X− × T,

π−1
{

(ω−, θ)
}

=
{

(ω−, ω+, θ) : ω+ ∈ X+
}

=: W u
loc(ω

−, θ)

are the local unstable sets of the partially hyperbolic dynamical system
f : X × T→ X × T. We clarify this in the following.

Let x, y ∈ X with x− = y−. Namely,

x = (· · · , x−1, x0;x1, · · · ), y = (· · · , x−1, x0; y1, · · · ).

Then

σ−1x = (· · · , x−1;x0, x1, · · · ), σ−1y = (· · · , x−1;x0, y1, · · · )

which gives d(σ−1x, σ−1y) ≤ 2−1. If (x, θ), (y, θ) belong to the same
fiber W u

loc(x
−, θ), then x− = y− and

f−1(x, θ) = (σ−1x, θ + x−1), f−1(y, θ) = (σ−1y, θ + x−1)

are still in the same fiber W u
loc(x

−, θ + x−1) with

d0(f−1(x, θ), f−1(y, θ)) ≤ 2−1.

So f−1 contracts the fibers. By induction,

d0(f−n(x, θ), f−n(y, θ)) ≤ 2−n.

Backward contracting means they are unstable sets.
Let ϕ ∈ Hα(X×T), we may define the unstable holonomies between

two points (x, θ), (y, θ) ∈ W u
loc(x

−, θ) by

huϕ((x, θ), (y, θ)) :=
∞∑
n=1

[ϕ(f−n(y, θ))−ϕ(f−n(x, θ))] ≤ vα(ϕ)
∞∑
n=1

2−nα <∞.
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Proposition 4.13. Given (x, θ), (y, θ), (z, θ) on the same fiber, the fol-
lowing properties hold (the last one holds if f(y, θ) and f(x, θ) belong
to the same fiber):

(a) huϕ((x, θ), (x, θ)) = 0,

(b) huϕ((x, θ), (y, θ)) = −huψ((y, θ), (x, θ)),

(c) huϕ((x, θ), (z, θ)) = huϕ((x, θ), (y, θ)) + huϕ((y, θ), (z, θ)),

(d) huϕ((x, θ), (y, θ)) + ϕ(y, θ) = ϕ(x, θ) + huϕ(f(x, θ), f(y, θ)).

In the following, we are going to prove Proposition 4.12, which re-
duces ϕ ∈ Hα(X × T) to

ϕ− ∈ Hβ(X− × T) ≡ {ψ ∈ Hβ(X × T) : ψ is future independent}
in the sense that ϕ and ϕ− ◦ f are cohomologous through some η ∈
Hβ(X ×T). Moreover, the map ϕ→ ϕ− is a bounded linear operator.

We will try to guess what η and the ϕ− should be. Actually η
determines ϕ− simply by

ϕ− ◦ f = η ◦ f − η + ϕ

which is equivalent to

ϕ− = η − η ◦ f−1 + ϕ ◦ f−1.

This is still related to the cohomological equation.
So, let us recall some basic results on the cohomological equations.

Let (M, f) be a dynamical system. For an observable ϕ : M → R, the
goal is to find an η : M → R such that ϕ = η− η ◦ f . In fact, we want
more in the sense that if ϕ has some regularity, the solution η should
have the same or almost the same regularity.

Theorem 4.7 (Gottschalk-Hedlund). Let M be a compact metric space.
Assume f : M → M is a minimal homeomorphism and the observable
ϕ : M → R is continuous. If {Snϕ(x)}n≥0 is uniformly bounded in
n ∈ N and x ∈ M , then there is a continuous function η : M → R
satisfying ϕ = η − η ◦ f .

We give a hint of the proof here. Let

η(x) := sup
n≥0

Snϕ(x) = ϕ(x) + sup
n≥0

Sn(ϕ ◦ f(x)) = ϕ(x) + η ◦ f(x).

And then prove η is continuous.

Remark 4.8. Instead of the supn≥0, one can take any other “intrinsic
characteristics” of the sequence Snϕ that makes sense. For example,
infn≥0, limn≥0 etc.

Actually, there is a more subtle result.
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Theorem 4.8 (Livšic). Let f be a diffeomorphism on a Riemannian
manifold Λ ⊂ M which is compact, topological transitive and is a hy-
perbolic set. Let ϕ : Λ → R be α-Hölder continuous. Assume that
whenever fp(x) = x we have Spϕ(x) = 0. Then ∃! (up to an additive
constant) η : Λ→ R α-Hölder continuous such that ϕ = η − η ◦ f .

We also give a rough idea of the proof. By topological transitivity,
∃x0 ∈ Λ s.t. O+

f (x0) is dense in Λ. We define η on this orbit and extend
it to Λ by continuity:

η(fn(x0)) = Snϕ(x0) + η(x0).

The thing left is to prove Hölder continuity using hyperbolicity.
As was already mentioned, we are going to guess how we should

define η and ϕ− (which is future independent) such that

ϕ− ϕ− ◦ f = η − η ◦ f
which is equivalent to

ϕ ◦ f−1 − ϕ− = η ◦ f−1 − η. (4.2)

If we could solve the cohomological equation for ϕ◦f−1 (solution η1)
and for ϕ− (solution η2), then η1 − η2 would be a solution of (4.2).

For ϕ ◦ f−1, η1 could be

η1(a) = −
∞∑
n=0

ϕ ◦ f ◦ f−n(a) = −
∞∑
n=1

ϕ ◦ f−n(a), a ∈ X × T.

Then formally we have

ϕ ◦ f−1 = η1 ◦ f−1 − η1.

For ϕ−, let us say
ϕ− = η2 ◦ f−1 − η2

where we do not know ϕ− but it is related to ϕ and it is future inde-
pendent.

The current question is how to get observables that are future inde-
pendent. Fix the future p+ ∈ X+, define

P : X × T→ X × T, P (ω−;ω+; θ) = (ω−; p+; θ).

Then given any ψ : X × T→ R, ψ ◦ P is future independent.
Knowing this, let formally

η2(a) := −
∞∑
n=1

ϕ ◦ f−n ◦ P (a), a ∈ X × T.

Then
ϕ− := η2 ◦ f−1 − η2 = ϕ ◦ f−1 ◦ P
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is future independent.
Let η = η1 − η2,

η(ω, θ) =
∞∑
n=1

ϕ ◦ f−n(P (ω, θ))− ϕ ◦ f−n(ω, θ) = huϕ((ω, θ), P (ω, θ)).

Note that (ω, θ), P (ω, θ) ∈ W u
loc(ω

−, θ) since they share the same past
x− and have the same θ.

Remark 4.9. σ−nω and σ−n(ω−, p+) share the same coordinates at
least until n, thus d(σ−nω, σ−n(ω−, p+)) ≤ 2−(n+1). This implies

d0(f−n(ω, θ), f−n(P (ω, θ))) ≤ 2−(n+1) ≤ 2−n.

Now, let us show the well-definedness of η = ηϕ. For any ϕ ∈
Hα(X × T), we have∣∣ϕ(f−n(ω, θ))− ϕ(f−nP (ω, θ))

∣∣ ≤ vXα (ϕ) · 2−nα

which implies

‖ηϕ‖∞ ≤ vXα (ϕ)
∞∑
n=1

2−nα . vXα (ϕ).

Define ϕ− s.t. the homological equation holds:

ϕ− = ηϕ − ηϕ ◦ f−1 + ϕ ◦ f−1.

We separate several steps.
Step 1. Note that ϕ → ηϕ is linear, which gives that ϕ → ϕ− is

linear also.
Step 2. ϕ− is indeed future independent.

ϕ−(a) = huϕ(a, P (a))− huϕ(f−1(a), P (f−1(a)) + ϕ ◦ f−1(a).

Note that

huϕ(a, P (a)) + ϕ ◦ f−1(a) = huϕ(f−1(a), f−1(P (a))) + ϕ ◦ f−1(P (a)).

This implies

ϕ−(a) = huϕ(Pf−1(a), f−1(P (a))) + ϕ ◦ f−1(P (a)).

Since P fixes the future and P is in every term ( where Pf−1(a) does
not depend on non-negative coordinates which is even better), ϕ− is
future independent.

Step 3. ‖ϕ−‖β . ‖ϕ‖α. This is equivalent to saying that ϕ− ∈ Hβ

and ϕ→ ϕ− is bounded. Write again

ϕ− = ηϕ − ηϕ ◦ f−1 + ϕ ◦ f−1.
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Since f−1 is Lipschitz w.r.t. d0, it is enough to show that

‖ηϕ‖β . ‖ϕ‖α .
By definition,

‖ηϕ‖β = ‖ηϕ‖∞ + vXβ (ηϕ) + vTβ (ηϕ).

But we already know ‖ηϕ‖∞ . vXα (ϕ) ≤ ‖ϕ‖α.
It is enough to show that respectively vXβ (ηϕ) . ‖ϕ‖α and vTβ (ηϕ) .

‖ϕ‖α. We prove them one by one.
Rewrite

ηϕ(ω, θ) =
∞∑
n=1

ϕ ◦ f−n ◦ P (ω, θ)− ϕ ◦ f−n(ω, θ) =:
∞∑
n=1

gn(ω, θ).

Fix x, y ∈ X, assume that xj = yj until |j| ≤ k, then d(x, y) =
2−(k+1) ≤ 2−k. We want to show that for any θ ∈ T and any k ∈ N

|ηϕ(x, θ)− ηϕ(y, θ)| . vXα (ϕ)2−kβ,

which will imply vXβ (ηϕ) . vXα (ϕ) ≤ ‖ϕ‖α.
By triangle inequality, we have (without loss of generality, assume k

is even, otherwise just take the integer part of k/2)

|ηϕ(x, θ)− ηϕ(y, θ)| ≤
k
2∑

n=1

|gn(x, θ)− gn(y, θ)|+
∑
n> k

2

|gn(x, θ)− gn(y, θ)| .

We analyze the right hand side separately.∑
n> k

2

|gn(x, θ)− gn(y, θ)| ≤
∑
n> k

2

|gn(x, θ)|+
∑
n> k

2

|gn(y, θ)| .
∑
n> k

2

vXα (ϕ)2−nα.

Since n > k
2
, then 2n > k. Let β = α

3
, we have

nα = 3nβ = 2nβ + nβ > kβ + nβ,

and then
2−nα < 2−kβ · 2−nβ.

Hence∑
n> k

2

|gn(x, θ)− gn(y, θ)| . vXα (ϕ)2−kβ
∑
n≥0

2−nβ . vXα (ϕ)2−kβ.

On the other hand, for
∑ k

2
n=1 |gn(x, θ)− gn(y, θ)| , we know 2n ≤ k,

2−(k+n) ≤ d(σ−nx, σ−ny) ≤ 2−(k−n)

and
2−(k+n) ≤ d0(f−n(x, θ), f−n(y, θ)) ≤ 2−(k−n).
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Therefore, ∣∣ϕ ◦ f−n(x, θ)− ϕ ◦ f−n(y, θ)
∣∣ ≤ vXα (ϕ)2−(k−n)α

as ϕ ∈ Hα. The same estimate holds with P (x, θ), P (y, θ) instead of
(x, θ), (y, θ), which implies

|gn(x, θ)− gn(y, θ)| . vXα (ϕ)2−(k−n)α.

Hence, because of k ≥ 2n thus (k − n)α ≥ nα, we have

∑
n> k

2

|gn(x, θ)− gn(y, θ)| . vXα (ϕ)

k
2∑

n=1

2−(n−k)α . vXα (ϕ)

k
2∑

n=1

2−kβ · 2−nβ

which again shows∑
n> k

2

|gn(x, θ)− gn(y, θ)| . vXα (ϕ)2−kβ.

Combining the previous estimate, we have

|ηϕ(x, θ)− ηϕ(y, θ)| . vXα (ϕ)2−kβ

for every θ ∈ T and every k ∈ N, which further implies

vXβ (ηϕ) . vXα (ϕ) ≤ ‖ϕ‖α .

Following the same strategy, we also have vTβ (ηϕ) . ‖ϕ‖α . More
precisely, fix any x ∈ X and for θ, θ′ ∈ T, let N ∈ N such that |θ − θ′| ≈
2−N , so N ≈ log 1

|θ−θ′| .

Like before, we have∑
n≥N

|gn(x, θ)| ≤
∑
n≥N

vXα (ϕ)2−nα . vXα (ϕ) |θ − θ′|α .

The same estimate holds for (x, θ′). Therefore,∑
n≥N

|gn(x, θ)− gn(x, θ′)| . vXα (ϕ) |θ − θ′|α ≤ ‖ϕ‖α |θ − θ
′|α .

On the other hand,∣∣ϕ ◦ f−n(x, θ)− ϕ ◦ f−n(x, θ′)
∣∣ ≤ vTα(ϕ) |θ − θ′|α

and the same estimate holds for P (x, θ), P (x, θ′). So we get

|gn(x, θ)− gn(x, θ′)| . vTα(ϕ) |θ − θ′|α .
This implies∑
0≤n<N

|gn(x, θ)− gn(x, θ′)| . vTα(ϕ) |θ − θ′|α log
1

|θ − θ′|
. ‖ϕ‖α |θ − θ

′|α
−
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and thus

|ηϕ(x, θ)− ηϕ(x, θ′)| . ‖ϕ‖α |θ − θ
′|α
−

+‖ϕ‖α |θ − θ
′|α ≤ ‖ϕ‖α |θ − θ

′|β .

This shows vTβ (ηϕ) . ‖ϕ‖α. Note that actually here β = α− but we do
not make use of it.

To conclude, ‖ηϕ‖β . ‖ϕ‖α for β = α
3
. Thus ηϕ ∈ Hβ(X × T) and

ϕ− ∈ Hβ(X ×T) which is future independent, namely ϕ− ∈ Hβ(X−×
T). Also ϕ→ ϕ− is bounded.

This finishes the whole proof of Proposition 4.12.

Remark 4.10. For vTβ semi-norm, it almost has no loss since we can
choose β = α−. Note that our choice of β = α

3
is not optimal. The

sharp estimate of β is left to the readers.

5. Statistical properties for certain dynamical systems
via the transfer operator

By “certain dynamical systems” we mean (mostly) the simplest pos-
sible models, the objective being to illustrate the method.

Recall that we already obtain statistical properties like LDT and
CLT for certain systems via the Markov operator in the previous sec-
tion. We managed to sort of fit certain deterministic dynamical systems
(DDS) into the abstract probability scheme. For instance,

(1) Mixed random-quasiperiodic base dynamics.
(2) Random linear cocycles (locally constant).

Other models that sort of fit the scheme:
(3) Cocycles over a uniformly hyperbolic base dynamics and the

fiber dynamics are partially hyperbolic when projectivized (Duarte-
Klein-Poletti).

(4) Cocycles over mixed random-quasiperiodic base dynamics (Cai-
Duarte-Klein).

An important aspect in all of these models is the use of coding (sym-
bolic dynamics), the shift.

We will present a brief introduction to the use of the transfer operator
via the functional approach to the study of statistical properties for
certain DDS without coding.

Transfer operator encodes the action of a DS on mass densities of ini-
tial conditions. Let (M,B,m) be a Borel probability space where m is
the reference measure. Let f : M →M be continuous (non-invertible)
and non-singular in the sense that m(E) = 0⇒ m(f−1(E)) = 0,∀E ∈
B.
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Example. (T,B,m) where m is the Lebesgue measure. f(x) =
2x mod 1 which is the doubling map.

Start with a density function h ∈ L1(dm), consider the measure
dmh = hdm and f∗mh = mh ◦ f−1.

Remark 5.1. Note that f∗mh � m. Because if m(E) = 0, then
m(f−1(E)) = 0 and f∗mh(E) = mh(f

−1(E)) =
∫
f−1(E)

hdm = 0.

Then we naturally have the following definition.

Definition 5.1. L : L1(dm)→ L1(dm),

Lh =
df∗mh

dm
= Radon-Nikodym derivative of f∗mh w.r.t. m.

In fact, we have an equivalent characterization of L.

Proposition 5.1. Given h ∈ L1(dm), Lh is characterized by

∀ϕ ∈ L∞(dm),

∫
ϕ · Lhdm =

∫
(ϕ ◦ f)hdm

in the sense that Lh is the unique function in L1(dm) such that the
equation holds.

Proof.

Lh =
df∗mh

dm
⇒ Lhdm = df∗mh.

This shows ∀ϕ ∈ L∞(dm),∫
ϕ · Lhdm =

∫
ϕdf∗mh =

∫
ϕ ◦ fdmh =

∫
(ϕ ◦ f)hdm.

For uniqueness, if ψ1, ψ2 ∈ L1(dm) s.t.∫
(ϕ ◦ f)hdm =

∫
ϕψ1dm =

∫
ϕψ2dm, ∀ϕ ∈ L∞(M),

then by simple measure theory, ψ1 = ψ2 m-a.e. �

Here are some properties of L.

Proposition 5.2. L is a linear operator. It is positive: if h ≥ 0 then
Lh ≥ 0. It is also bounded with norm 1 on L1(dm).

Proof. Linearity follows from the characterization. Positivity is also
clear because it is the Radon-Nikodym derivative of two positive mea-
sures.

We want to show that ‖Lh‖1 ≤ ‖h‖1. For our purpose, we first show
that if h ≥ 0, then ‖Lh‖1 = ‖h‖1.
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Fix h ≥ 0, by the characterization, if ϕ = 1 is a constant function,
then

‖Lh‖1 =

∫
Lhdm =

∫
1 · Lhdm =

∫
(1 ◦ f)hdm =

∫
hdm = ‖h‖1 .

In general, let h ∈ L1(dm), then |h| ∈ L1(dm) and |h| ≥ 0. So by
linearity and positivity we have both Lh ≤ L |h| and L(−h) ≤ L |h|.
This implies |Lh| ≤ L |h|. Hence

‖Lh‖1 =

∫
|Lh| dm ≤

∫
L |h| dm =

∫
|h| dm = ‖h‖1 .

This finished the proof. �

Example. Doubling map f(x) = 2x mod 1 on [0, 1], h ∈ L1(dm),

Lh(x) =
1

2

[
h(
x

2
) + h(

x+ 1

2
)

]
.

Proof. For ϕ ∈ L∞(dm),∫ 1

0

ϕ(x)Lh(x)dx =

∫ 1

0

ϕ(2x mod 1)h(x)dx

=

∫ 1
2

0

ϕ(2x)h(x)dx+

∫ 1

1
2

ϕ(2x− 1)h(x)dx

=
1

2

∫ 1

0

ϕ(y)h(
y

2
)dy +

1

2

∫ 1

0

ϕ(y)h(
y + 1

2
)dy

=

∫ 1

0

ϕ(y)

[
1

2

(
h(
y

2
) + h(

y + 1

2
)

)]
dy.

�

Let us proceed with the smooth expanding maps of the torus.
Let f ∈ Cr(T,T) with r ≥ 2. Assume that |f ′(x)| ≥ λ∗ > 1, ∀x ∈ T.

As before, denote by m the Lebesgue measure. (Or more generally,
consider M a compact, connected Riemannian manifold, f : M → M
smooth. ∀x ∈M, ∀ v ∈ TxM , |Dfx(v)| ≥ λ∗ ‖v‖ , λ∗ > 1).

By the derivative assumption, all x ∈ T have the same (via inverse
function theorem, connectedness and compactness of T) finite number
n of preimages. Moreover, there is an open partition of T:

{I1, · · · , In} s.t.
n⋃
j=1

Īj = T

with each Ij open, such that every

f |Ij : Ij → T\{0}
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is a bijection. Let

gj := f |−1
Ij

: T\{0} → Ij.

For any test function ϕ ∈ L∞(dm),∫
T
ϕLhdm =

∫
T
(ϕ ◦ f)hdm

=
n∑
j=1

∫
Ij

(ϕ ◦ g−1
j )(y)h(y)dy

=
n∑
j=1

∫
T
ϕ(x)

h(gj(x))

|f ′(gj(x))|
dx

=

∫
T
ϕ(x)

n∑
j=1

h(gj(x))

|f ′(gj(x))|
dx.

Here in the third equality we used the change of variables x = g−1
j (y).

Then y = gj(x) and dy =
∣∣g′j(x)

∣∣ dx = 1
|f ′(gj(x))|dx. Moreover, for every

x ∈ T\{0}, f−1(x) = {gj(x) : j = 1, · · · , n}. Hence, we have proved
that

Lh(x) =
∑

y:f(y)=x

1

|f ′(y)|
h(y).

We are interested in finding invariant measures for (T, f) where f :
T→ T is a differentiable topological dynamical system.

We would like to see it as an MPDS, so we need to consider an f -
invariant Borel probability measure on T. There are plenty of such
measure, e.g. if fm(p) = p, then 1

m

∑m−1
j=0 δfj(p) is f -invariant.

Certainly, one type of interesting f -invariant measure is the measure
which is absolutely continuous with respect to the Lebesgue measure
m. The following proposition gives a characterization of a.c. measures.

Proposition 5.3. dµ0 := h0dm is an f -invariant measure ⇔ Lh0 =
h0. In other words, the a.c. f -invariant measures correspond to the
eigenvector of L with eigenvalue 1.

Proof. µ0 is f -invariant ⇔
∫
ϕ ◦ fdµ0 =

∫
ϕdµ0,∀ϕ ∈ L∞(dm). This

is equivalent to saying that∫
(ϕ ◦ f)h0dm =

∫
ϕh0dm

⇔ ∫
ϕ · Lh0dm =

∫
ϕh0dm
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⇔
Lh0 = h0.

�

Our goal is to study the spectral properties of the transfer operator
L. It turns out that the spectrum of L on L1 is

D̄ = {z ∈ C : |z| ≤ 1} .

For this purpose, let us introduce the Lasota-Yorke inequalities.
Recall that

Lh(x) =
∑

y:f(y)=x

h(y)

|f ′(y)|
.

Moreover, f−1{x} = {y1, · · · , ym}, gj = f |−1
Ij

: T\{0} → Ij such that

gj(x) = yj. Since

g′j(x) =
1

f ′(gj(x))
,

we have

Lh(x) =
m∑
j=1

h(gj(x))

|f ′(gj(x))|
.

Assume that the derivative of h, h′ exists, we want to find (Lh)′. Direct
computation shows that

(Lh)′ = L(h′ · 1

f ′
)− L(h · f ′′

(f ′)2
),

provided h ∈ L1, h′ exists and h′ ∈ L1.
Recall that if ϕ ∈ L1, ψ ∈ L∞ ⇒ ϕψ ∈ L1 and ‖ϕψ‖1 ≤ ‖ϕ‖1 ‖ψ‖∞.

As |f ′(x)| ≥ λ∗ > 1, ∀x ∈ T, we have∣∣∣∣ 1

f ′

∣∣∣∣ ≤ 1

λ∗
< 1, sup

T

∣∣∣∣ f ′′(f ′)2

∣∣∣∣ =: D is called the distortion of f.

In particular, for the doubling map f(x) = 2x mod 1, D = 0.
Let

W1,1(T) :=
{
h : T→ R, h ∈ L1, h′ exists a.e. and h′ ∈ L1

}
be the Sobolev space.

We already know that ‖Lg‖1 ≤ ‖g‖1, so∥∥∥∥L(h′ · 1

f ′
)

∥∥∥∥
1

≤
∥∥∥∥h′ · 1

f ′

∥∥∥∥
1

≤ λ−1
∗ ‖h′‖1 < ‖h

′‖1 .
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Note that W1,1(T) 3 h→ ‖h′‖1 is a seminorm. Therefore, on W1,1(T)
we consider the norm

‖h‖1,1 = ‖h′‖1 + a ‖h‖1 , a > 0.

The inequalities

‖Lh‖1 ≤ ‖h‖1 ,

‖(Lh)′‖1 ≤ λ−1
∗ ‖h′‖1 +D ‖h‖1 ,

are called Lasota-Yorke type inequalities. In particular, they show that
L is bounded on the Sobolev space W1,1(T). If h ∈ W1,1,

‖Lh‖1,1 = ‖(Lh)′‖1 + a ‖Lh‖1 (5.1)

≤ λ−1
∗ ‖h′‖1 + (D + a) ‖h‖1 (5.2)

≤ λ−1
∗ ‖h‖1,1 +

D + a

a
‖h‖1,1 (5.3)

≤ C ‖h‖1,1 , (5.4)

where C = 2 max
{
λ−1
∗ ,

D+a
a

}
.

Let us summarize: (W1,1, ‖·‖1,1) ↪→ (L1, ‖·‖1) and L is bounded on
both spaces. The Lasota-Yorke inequalities are{

‖Lh‖1 ≤ ‖h‖1 , ∀h ∈ L1,

‖Lh‖1,1 ≤ λ−1
∗ ‖h′‖1,1 + C ′ ‖h‖1 .

By induction, ∀n ∈ N we have{
‖Lnh‖1 ≤ ‖h‖1 ,

‖Lnh‖1,1 ≤ (λ−1
∗ )n ‖h′‖1,1 + C ′′ ‖h‖1 .

By a theorem of Hennion (Ionescu-Tulcea & Marinescu), it turns out
that L is quasi-compact onW1,1 with essential spectral radius less than
or equal to λ−1

∗ < 1.
Let us consider a particular situation when we do not need the force

of Hennion: λ−1
∗ + D < 1. For doubling map, λ∗ = 2 and D = 0 so it

is satisfied.
We take ‖h‖1,1 = ‖h′‖1 + a ‖h‖1 where a > 0 such that

λ−1
∗ +D + a < 1.

Then L will be a strict contraction on some subspace

V =

{
h ∈ W1,1 :

∫
hdm = 0

}
.

Note that V is L-invariant.
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If h ∈ V , then
∫
hdm = 0. Since h is continuous, then ∃x0 ∈ T s.t.

h(x0) = 0. Hence, if h ∈ V ,

‖h‖1 =

∫
T
|h(x)| dx =

∫
T

∣∣∣∣∫ x

x0

h′(y)dy

∣∣∣∣ dx
≤
∫
T

(∫ x

x0

|h′(y)| dy
)
dx ≤

∫
T
‖h′‖1 dx ≤ ‖h

′‖1 .

Then, for h ∈ V ,

‖Lh‖1,1 ≤ λ−1
∗ ‖h′‖1 + (D + a) ‖h‖1

≤ (λ−1
∗ +D + a) ‖h′‖1

≤ (λ−1
∗ +D + a) ‖h‖1,1

≤ σ ‖h‖1,1

where σ < 1,∀h ∈ V . This shows the contracting of L on V .

Theorem 5.1. There exists a unique absolutely continuous f -invariant
probability measure dµ∗ = h∗dm. Moreover, if h ∈ W1,1 then ∃σ < 1
such that ∀n ∈ N∥∥∥∥Lnh− (∫ hdm

)
h∗

∥∥∥∥
1,1

≤ σn
∥∥∥∥h− (∫ hdm

)
h∗

∥∥∥∥
1,1

≤ Cσn ‖h‖1,1 .

Proof. Consider the dual operator L∗, L∗m = m ⇔
〈ϕ,L∗m〉 = 〈ϕ,m〉,∀ϕ ∈ C0(T)

⇔
〈Lϕ,m〉 = 〈ϕ,m〉,∀ϕ ∈ C0(T)

⇔ ∫
Lϕdm =

∫
ϕdm,∀ϕ ∈ C0(T)

which is true by the characterization of L. This shows that 1 is an
eigenvalue of L∗ which is equivalent to saying that 1 is an eigenvalue
of L (in finite dimensional case this is true without any assumption
but here it is indeed true because of the quasi-compactness of L, we
will clarify this in detail later). Namely, ∃h∗ ∈ L1 s.t. Lh∗ = h∗,
which implies that h∗dm is f -invariant. This shows the existence of
f -invariant absolutely continuous measure.

For the uniqueness, assume that the inequality in the theorem holds.
Then if dµ = ϕdm is another f -invariant probability measure, then∫
ϕdm = 1 and Lϕ = ϕ. Moreover, by the inequality,∥∥∥∥Lnϕ− (

∫
ϕdm)h∗

∥∥∥∥
1,1

≤ Cσn ‖h‖1,1 → 0
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as n→∞. This shows ‖ϕ− h∗‖1,1 → 0 which gives ϕ = h∗.

Finally, let us prove the inequality. Consider any h ∈ W1,1, let

Nh :=

(∫
hdm

)
h∗, Rh := L(h−Nh).

Note that h−Nh ∈ V because∫
h−Nhdm =

∫
hdm−

∫
Nhdm = 0.

Then

Lh = Rh+Nh = Rh+ (

∫
hdm)Lh∗ = Rh+ (

∫
hdm)h∗.

Since R ◦N = N ◦R = 0, then L = R⊕N where N 2 = N . So

Lnh = Rnh+ (

∫
hdm)h∗.

Hence

Rnh = Lnh− (

∫
hdm)h∗.

It follows that∥∥∥∥Lnh− (

∫
hdm)h∗

∥∥∥∥
1,1

= ‖Rnh‖1,1 =

∥∥∥∥Ln(h− (

∫
hdm)h∗

)∥∥∥∥
1,1

.

As h− (
∫
hdm)h∗ ∈ V , we have∥∥∥∥Lnh− (

∫
hdm)h∗

∥∥∥∥
1,1

≤ σn
∥∥∥∥h− (

∫
hdm)h∗

∥∥∥∥
1,1

This finishes the proof. �

Remark 5.2. Ln1→ h∗ as n→∞.

5.1. Hennion’s Theorem. In the following, we present the theorem
of Hennion as well as the proof of it.

Theorem 5.2 (Hennion 1993). Let B ⊂ Bω be two Banach spaces, ‖·‖
and ‖·‖ω being the respective norm, satisfying ‖·‖ω ≤ ‖·‖ . In addition,
let T : B → B be a linear operator s.t. ∃m,C, θ > 0, θ < m and n0 ∈ N
s.t. T n0 : B → Bω is a compact operator and for each n ∈ N and v ∈ B,

‖T nv‖ω ≤ Cmn ‖v‖ω ,

‖T nv‖ ≤ Cθn ‖v‖+ Cmn ‖v‖ω .
Then the spectral radius of T is bounded by m and its essential spectral
radius is bounded by θ.
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Before the proof, there are various lemmas and definitions to be
given.

Denote by L(B,B) the set of bounded linear operators from B to
itself. For each A ∈ L(B,B), we denote by R(A) the range of A and
by N (A) the kernal of A.

Definition 5.2. We say that an operator P ∈ L(B,B) is a projection
if and only if P 2 = P .

Lemma 5.4. If P is a projection, then B = N (P )⊕R(P ).

Definition 5.3. An operator K ∈ L(B,B) is compact if and only if
for any bounded set D, the closure of k(D) is compact.

Definition 5.4. Given A ∈ L(B,B), we define the resolvent set of A
as

ρ(A) := {z ∈ C : z1− A has bounded inverse} ,
and the spectrum of A as σ(A) = C\ρ(A). For simplicity, in the
following we omit “1”.

We define the spectral radius of A as

r(A) = lim
n→∞

‖An‖
1
n .

Definition 5.5 (Essential spectrum). Let T ∈ L(B,B), the essential
spectrum of T , denoted by σess(T ) is the set of λ ∈ σ(T ) such that at
least one of the following conditions holds:

(1) R(λ− T ) is not closed.
(2) ∪n≥1N (λ− T )n is infinite dimensional.
(3) λ is a limit point of σ(T )\{λ}.

Lemma 5.5. Let B be a Banach space, V ⊂ B a proper closed sub-
space. Then for every ε > 0, there exists x0 ∈ B with ‖x0‖ = 1 and
dist(x0,V) ≥ 1− ε.

Definition 5.6 (Proper). A continuous map F : U ⊂ X → Y between
topological spaces is called proper if F−1(M) is compact whenever M ⊂
Y is compact.

Theorem 5.3. Every locally compact space X has finite dimension.

Lemma 5.6. Let X and Y be Banach spaces and S ∈ L(X, Y ). If S
restricted to closed bounded set is proper, then N (S) is finite dimen-
sional and R is closed.

A more detailed version of this lemma with proof will appear later.
let B be a Banach space and A be a bounded set of B.
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Definition 5.7 (Measure of noncompactness). The measure of non-
compactness of A ⊂ B is defined as the infimum of d > 0 such that
there exists a finite number of sets S1, · · · , Sn with diam(Si) ≤ d,∀ i =
1, · · · , n and A ⊂ ∪ni=1Si. Moreover, we denote the measure of noncom-
pactness of A by r(A).

Definition 5.8 (Ball measure of noncompactness). The ball measure
of noncompactness, r̃(A) is the infimum of d > 0 such that there exists
a finite number of balls B1, · · · , Bn with centers in B with radius d and
A ⊂ ∪ni=1Bi.

Remark 5.3. It is obvious that r(A) ≤ r̃(A).

Definition 5.9 (K-set(-ball) contraction). Let B1 and B2 be Banach
spaces. We say that T ∈ L(B1,B2) is a K-set contraction if ∀A ⊂ B1

bounded,
rB2(T (A)) ≤ KrB1(A).

T is called a K-set-ball contraction if

r̃B2(T (A)) ≤ Kr̃B1(A).

We define

r(T ) = inf {K > 0 : T is a K-set contraction} .
r̃(T ) = inf {K > 0 : T is a K-set-ball contraction} .

Lemma 5.7. We have the following properties.

(1) If A ⊂ B, then Ā is compact iff r̃(A) = 0. Also, Ā is compact
iff r(A) = 0.

(2) T ∈ L(B,B) is compact iff r̃(T ) = 0. Also, T is compact iff
r(T ) = 0.

(3) r(T ) ≤ ‖T‖.
(4) For bounded sets A,B ∈ B, we have

r(A+B) ≤ r(A) + r(B)

and
r̃(A+B) ≤ r̃(A) + r̃(B).

Lemma 5.8 (B3, Liverani). Let X, Y be Banach spaces, S ∈ L(X, Y ),
then the following are equivalent:

(1) For any B ⊂ X closed and bounded, S|B is proper (i.e. K ⊂ Y
compact implies that S−1(K) ∩B ⊂ X is compact).

(2) If {xn} ⊂ X is bounded and Sxn → y, then ∃ {xnk} which
converges.

(3) N (S) = ker(S) is finite dimensional and R(S) = range(S) is
closed.
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Proof. We give the proof in the following order.
(1)⇒ (2).
Sxn → y implies that A := {Sxn : n ≥ 1} ∪ {y} ⊂ Y is compact,

which by properness further implies that {xn} ⊂ S−1(A) ∩ B is com-
pact. Thus ∃ {xnk} which converges.

(2)⇒ (1).
Fix B ⊂ X closed and bounded, K ⊂ Y compact. Take any {xn} ⊂

S−1(K) ∩ B ⊂ X, then {xn} is bounded. Note also that {Sxn} ⊂ K
which is compact, thus ∃Sxnk → y. Then by (2), ∃ {xnkl} which

converges. This proves S−1(K) ∩B ⊂ X is compact, hence (1) holds.
(3)⇒ (2).
If F ⊂ X is finite dimensional, then there exists a closed complement

C of F in X such that X = F ⊕ C (because if P is the projection on
F , then C = kerP ). This is only valued when F has finite dimension.

By assumption, N (S) having finite dimensional implies that ∃C
closed s.t. X = N (S) ⊕ C. R(S) is closed in Y which is a Banach
space, so R(S) is also Banach with the induced norm from Y . Also, C
is Banach as it is closed. Then

S|C : C → R(S)

is bounded linear and surjective. By Banach open mapping theorem,
S|−1

C is continuous and bounded.
Let {xn} ⊂ X be bounded and Sxn → y. Write

xn = an + cn, an ∈ N (S), cn ∈ C.

Then

Sxn = 0 + Scn → y ∈ R(S),

which implies cn → S−1y and cn is bounded.
On the other hand,

an = xn − cn
with xn bounded and cn bounded. So an is also bounded ∀n ∈ N.
Since {an} ⊂ N (S) is finite dimensional, then ∃ {ank} which converges
to a ∈ N (S). Therefore, we have

Xnk → a+ S−1y.

This proves (2).
(2)⇒ (3).
N (S) is a closed linear subspace of X so it is Banach. We are

going to show that N (S) is locally compact thus is finite dimensional.
Note that N (S) being locally compact is equivalent to saying that
∀ {xn} bounded in N (S), it has a convergent subsequence. Note that
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xn ∈ N (S) means Sxn ≡ 0→ 0. Thus by hypothesis, ∃xnk converges.
We conclude that N (S) is finite dimensional.

SinceN (S) is finite dimensional, ∃C ⊂ X closed s.t. X = N (S)⊕C.
We want to show that R(S) is closed.

Take {Sxn} ⊂ R(S) such that Sxn → y, we want to prove y = Sx
for some x ∈ X, which implies closedness of R(S). Like before, let

xn = an + cn

then

Sxn = 0 + Scn → y.

We claim that {cn} is bounded. By hypothesis, ∃ cnk → c. Thus
Scnk → Sc and also Scnk = Sxnk → y. By uniqueness of limit, y = Sc
for some c ∈ C ⊂ X.

Therefore, it remains to prove the claim. To prove {cn} is bounded,
assume by contradiction that {cn} is unbounded. Then up to passing
to a subsequence,

‖cn‖ → ∞, cn ∈ C.
Let

zn :=
cn
‖cn‖

∈ C, ‖zn‖ = 1.

Then

Szn =
Scn
‖cn‖

→ 0

since Scn → y and ‖cn‖ → ∞.
By hypothesis, ∃ {znk} coverges to z ∈ X which implies ‖z‖ = 1.

But Sznk → Sz with Sznk → 0, so Sz = 0. This shows that z ∈
N (S) ∩ C = {0} which gives z = 0. This contradicts to ‖z‖ = 1.

This finishes the whole proof. �

Denote re = sup{|λ| : λ ∈ σess(T )}. We have the following lemma.

Lemma 5.9. Let X be a Banach space and T ∈ L(X,X). Define

r′e := inf
n≥0

(r̃(T n))
1
n .

Then limn→∞ (r̃(T n))
1
n and limn→∞ (r(T n))

1
n exist and are equal to r′e.

Furthermore, if |λ| > r′e, then N (λ− T )r is finite dimensional for any
r ≥ 1 and R(λ− T ) is closed.

Proof. We will prove that

lim sup
n→∞

(r̃(T n))
1
n ≤ r′e.
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Take any ε > 0 and choose m ∈ N s.t.

(r̃(Tm))
1
m ≤ r′e + ε.

We take n large enough s.t. n = pm + q with 0 ≤ q ≤ m − 1. As a
fact, for S ∈ L(X,X) and A ⊂ X, we have

r̃(S(A)) ≤ r̃(S)r̃(A).

For S, T ∈ L(X,X),

r̃(ST (A)) ≤ r̃(S)r̃(T )r̃(A)

and
r̃(ST ) ≤ r̃(S)T̃

which is multiplicative. Hence

(r̃(T n))
1
n = r̃(T pm+q)

1
n

≤ r̃(Tm)
mp
mn r̃(T )

q
n

≤ (r′e + ε)
mp
n r̃(T )

q
n .

Take lim sup in n on both sides, it implies

lim sup
n→∞

(r̃(T n))
1
n ≤ r′e = inf

n
≤ lim inf

n
≤ lim sup

n
.

Thus limn→∞ (r̃(T n))
1
n = r′e. Note that r(T ) ≤ r̃(T ) for any T , arguing

similarly for r(T ) we get the first part of the lemma.
For the second part, choose λ s.t. |λ| > r′e and n such that

(r̃(T n))
1
n < |λ| .

Let T1 := 1
|λ|T , then r̃(T n1 ) = 1

|λ| . By Lemma 5.8, we will conclude the

proof if we prove the following lemma

Lemma 5.10. If for some n ∈ N, r̃(T n) < 1, then (1− T )r restricted
to closed and bounded sets is proper for any r ≥ 1.

Proof. Let A ⊂ X be closed and bounded and M ⊂ X be compact.
Define

M1 := {x ∈ A : (1− T )x ∈M} .
We claim that M1 is compact which implies r̃(M1) = 0.

For x ∈M1, ∃m ∈M s.t. m = x− Tx⇔ x = Tx+m. Thus

x = T (Tx+m) +m = T 2x+ Tm+m.

By iteration, we get

x = T nx+
n−1∑
i=0

T i(m).
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As T is bounded thus continuous, m∗ :=
∑n−1

i=0 T
i(m) is compact. We

know that
M1 ⊂ T n(M1) +M∗,

which implies

r̃(M1) ≤ r̃(T n(M1)) + r̃(M∗) = r̃(T n(M1)).

By submultiplicativity, we know

r̃(M1) ≤ r̃(T n(M1)) ≤ r̃(T n)r̃(M1).

This implies that r̃(M1) = 0 as r̃(T n) < 1, thus M1 is compact. This
proves that (1− T ) is proper. Suppose that (1− T )r−1 is proper. Let
M be compact, then (1− T )−(r−1)(M) is compact. Since

(1− T )−r(M) = (1− T )−1[(1− T )−(r−1)(M)],

then (1−T )−r(M) is compact thus (1−T )r is proper for any r ≥ 1. �

The whole proof is thus finished. �

The following lemma implies that r′e ≥ re.

Lemma 5.11. If |λ0| > r′e, then λ0 is not a limit point of σ(T )\{λ0}.

Proof. We claim that there exists a neighborhood of B of λ0, such that
∀λ 6= λ0, λ ∈ B, we have λ ∈ ρ(T ). Then this will show that λ0 is not
a limit point of σ(T )\{λ0}.

If λ0 ∈ ρ(T ), this is trivial. Now let us assume that λ0 ∈ σ(T ). We
are going to show that either

N (λ0 − T ) 6= 0 or N (λ0 − T ∗) 6= 0.

Suppose both are equal to zero, we denote D := R(λ0 − T ). Then
(λ0 − T )−1 : D → X exists. Moreover, using the previous lemma, D is
closed.

Assume D 6= X, then D is a closed proper subspace. Hence, ∃u ∈ X
with ‖u‖ = 1 and ‖u− w‖ ≥ 1

2
,∀w ∈ D. Let V := span{u,D}. If

v ∈ V , then
v = αu+ w, α ∈ R, ω ∈ D.

Define a linear functional l : v → R s.t. l(v) = α. Then

‖v‖ = ‖αu+ w‖ = |α|
∥∥u− (−α−1w)

∥∥ ≥ |α| · 1

2
,

which implies
|l(v)| ≤ 2 ‖v‖ =: ‖p(v)‖ .

Applying Hahn-Banach, l can be extended to the whole X and since
l(u) = 1 6= 0, l 6= 0.
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Let v ∈ X, we have

(λ0 − T ∗)l(v) = l((λ0 − T )v) = 0,

This contradicts toN (λ0−T ∗) = 0. So D = X and (λ0−T ) is invertible
on X. Thus (λ0 − T )−1 is a bounded operator. This shows λ /∈ σ(T )
which contradicts to λ0 ∈ σ(T ). Therefore, either N (λ0 − T ) 6= 0 or
N (λ0 − T ∗) 6= 0.

Now suppose that ∃ {λ̃n}n≥0 ⊂ σ(T )\{λ0} which accumulates to

λ0. Then there are either infinitely many ũn ∈ N (λ̃n − T ) or l̃n ∈
N (λ̃n − T )∗ by the claim above.

Thus, given ε > 0, ∃n̄ s.t. ∀n > n̄∣∣∣λ̃n − λ0

∣∣∣ < ε |λ0| .

Moreover, let MK be the subspace spanned by the eigenvectors

ũn̄, ũn̄+1, · · · , ũn̄+K

and denote uK := ũn̄+K , λK := λ̃n̄+K .
Since u1, · · · , uK are linearly independent, each MK−1 is a proper

closed subspace ofMK . Then ∃ vK ∈MK with ‖vK‖ = 1 s.t. d(vK ,MK−1) >
1− ε. In addition,

vK = αKuK + wK , wK ∈MK−1.

Take S > K ∈ N, r ∈ N, then

‖T rvS − T rvK‖ = ‖T r(αSuS) + T rwS − T rvK‖
= ‖αSλrSuS + T rwS − T rvK‖
= |λrS|

∥∥vS − (wS − λ−rS T rwS + λ−rS T rvK)
∥∥

≥ |λrS| (1− ε)
= |(λS − λ0 + λ0)r| (1− ε)

= |λ0|r
∣∣∣∣1 +

λS − λ0

λ0

∣∣∣∣r (1− ε)

≥ |λ0|r (1− ε)r+1.

This shows that T{‖v‖ ≤ 1} can not be covered by a finite number
of sets of diameter 1

4
|λ0|r (1− ε)r+1.

As ε is arbitrary, we get that

r̃(T r) ≥ r(T r) ≥ 1

4
|λ0|r .

In the second case, we get

r̃((T ∗)r) ≥ r((T ∗)r) ≥ 1

4
|λ0|r .
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Note that r(T ∗) ≤ r̃(T ), so in either case, we have r̃(T r) ≥ 1
4
|λ0|r.

Since r′e = infn(r̃(T n))
1
n ≥ |λ0|, this contradicts |λ0| > r′e. Then λ0

is not a limit point of σ(T )\{λ0}.
This finishes the proof. �

Finally, we can give the proof of Theorem 5.2.

Proof of Hennion’s theorem. Recall that our goal is to prove r(L) ≤ m
and re ≤ θ with θ < m. By assumption, we have

‖Lnv‖ ≤ Cθn ‖v‖+ Cmn ‖v‖ω ≤ 2Cmn ‖v‖ω .

Thus r(L) = limn→∞ ‖Ln‖
1
n ≤ m which easily gives the first result we

want.
Now, let us prove re ≤ θ.
Define B1 := {v ∈ B : ‖v‖ ≤ 1}. Note that

re ≤ r′e = inf
n

(r̃(Ln))
1
n ≤ lim

n→∞
(r̃(Ln))

1
n .

We claim LnB1 can be covered by a finite number of balls with radius
less than Cθn which will finish the proof.

Without loss of generality, we prove for n0 = 1. Other cases are the
same. L : B → Bω is a compact operator, so LB1 is relatively compact.
Let

Bε(v) = {w ∈ Bω : ‖v − w‖ω ≤ ε} .
Then obviously {Bε(v)}v∈LB1 covers LB1. By relative compactness,
there exist a finite number of sets

{V (vi)}Ni=1 := {Bε(vi) ∩ LB1}Ni=1

that cover LB1.
Now we will show that diam(Ln(V (vi))) ≤ Cθn for any n ∈ N.

Let v ∈ LB1, v = L(w), w ∈ B1. Moreover, let vi = L(wi). Direct
computation shows

‖Ln(w)− Ln(wi)‖ =
∥∥Ln−1(v − vi)

∥∥
≤ Cθn−1 ‖v − vi‖+ Cmn−1 ‖v − vi‖ω
≤ Cθn−1(‖v‖+ ‖vi‖) + Cmn−1ε

. θn

if ε = θn

mn−1 . This shows that LnB1 can be covered by a finite number
of balls with radius less than Cθn.

The proof is thus finished. �
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5.2. The spectral property. Let X, Y be Banach spaces and T :
X → Y be a bounded linear operator. The normed spaces are respec-
tively (X, ‖·‖X) and (Y, ‖·‖Y ).

Let us recall the definition of compact operators.

Definition 5.10. T is a compact operator if T (B) ⊂ Y is relatively
compact whenever B is bounded. Equaivalently, ∀ {xn}n≥0 ⊂ X a
‖·‖X-bounded sequence, {Txn}n≥0 ⊂ Y has a ‖·‖Y -convergent subse-
quence.

The following are some facts about compact operators.

(1) If z ∈ σ(T ), z 6= 0, then z is an eigenvalue of finite multiplicity.
(2) ∀ r > 0, the set of z ∈ σ(T ) with |z| ≥ r is finite. So the

spectrum of a compact operator on an infinite dimensional space
consists of “0, some other eigenvalues of finite multiplicity with
modulus less than r(T ), and a finite number of eigenvalues of
finite multiplicity with modulus r(T )”.

(3) If z ∈ σ(T ) and z 6= 0, then N (z − T )r stabilizes, i.e. ∃n ≥ 1,
ker(z − T )n = ker(z − T )r for all r ≥ n. Moreover, if ∃n0 ≥ 1
such that T n0 is compact, then this item still holds for T .

Theorem 5.4 (Riesz operator). Let T : X → X be a bounded linear
operator and denote by σ(T ) its spectrum. If τ ⊂ σ(T ) is an isolated
part of the spectrum in the sense that τ and τ ′ = σ(T )\τ are both closed.
Then there is a projection Pτ : X → X,P 2

τ = Pτ which commutes with
T , Pτ ◦ T = T ◦ Pτ (same for Pτ ′). If we put M = =Pτ , L = kerPτ ,
then X = M ⊕ L is a T -invariant decomposition and σ(T |M) = τ ,
σ(T |L) = τ ′.

The proof uses holomorphic functional calculus. Moreover, Pτ+Pτ ′ =
id, PτPτ ′ = Pτ ′Pτ = 0.

Definition 5.11 (Quasi-compact operator). T : X → X is called
quasi-compact if there is a T -invariant decomposition X = F ⊕ H
such that r(T |H) < r(T ), dimF < ∞ and each eigenvalue of T |F
has modulus equal to r(T ). Moreover, if dimF = 1, then T is called
quasi-compact and simple.

A quasi-compact operator has the spectral gap property. In fact,
using Riesz projectors, they are equivalent.

Definition 5.12 (Discrete and essential spectrum, Browder). Let T :
X → X be a bounded linear operator. We say λ ∈ σd(T ) if

(1) λ is an isolated point of σ(T ).
(2) The Riesz projector Pλ has finite rank.



108 A. CAI, P. DUARTE, AND S. KLEIN

Clearly, the discrete spectrum σd is at most countable. In addition, the
essential spectrum is σess(T ) = σ(T )\σd(T ).

We denote ress(T ) = sup {|λ| : λ ∈ σess(T )}.

Theorem 5.5 (Ionescu-Tulcea and Marinescu, Hennion). Let X ⊂ Y
be two Banach spaces with (X, ‖·‖X), (Y, ‖·‖Y ) and ‖·‖Y ≤ ‖·‖X . Let
T : X → X be a bounded linear operator. Assume that for some
σ0 ∈ (0, 1), C <∞, n0 ∈ N, the following hold:

(1) T n0 : (X, ‖·‖X)→ (Y, ‖·‖Y ) is compact.
(2) ∀n ∈ N,∀x ∈ X,

‖T nx‖Y ≤ C ‖x‖Y .
(3) ∀n ∈ N,∀x ∈ X,

‖T nx‖X ≤ Cσn0 ‖x‖X + C ‖x‖Y .
Then r(T ) ≤ 1 and ress(T ) ≤ σ0.

Corollary 5.12. Under the assumptions of this theorem, T is quasi-
compact. In fact, ∃σ1 ∈ (σ0, 1) s.t. σ(T ) consists of a finite number
of eigenvalues of modulus 1: namely τ , and the other part τ ′ where
r(T |kerPτ ) < σ1.

The complication of having σ1 instead of σ0 is because we only know
T n0 is compact instead of T . Let

σ = max {σ0, |λ| : λ < 1, λ ∈ σd(T )} .
Using Riesz projectors, we have moreover

I = Pτ + Pτ ′ =
∑
θ∈F

eiθPeiθ + Pτ ′

where F ⊂ [0, 2π) is finite. Apply T on both sides, we get

T =
∑
θ∈F

eiθTPeiθ + TPτ ′

and we denote TPeiθ = Πθ and TPτ ′ = S. Namely,

T =
∑
θ∈F

eiθΠθ + S

where r(S) ≤ σ < 1, Π2
θ = eiθΠθ, Πθ′Πθ = 0 if θ′ 6= θ and ΠθS =

SΠθ = 0, ∀ θ ∈ F . Therefore, for any n ∈ N+,

T n =
∑
θ∈F

einθΠθ + Sn.

So
∥∥T n −∑θ∈F e

inθΠθ

∥∥
X
→ 0 as r(S) < 1.
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Let us go back to talk about the expanding maps of the circle. We
will prove that its transfer operator is quasi-compact using Ionescu-
Tulcea and Marinescu or Hennion’s theorem. Recall that we have (T, f)
where f ∈ C2 with |f ′(y)| ≥ λ∗ > 1,∀ y ∈ T. We define the transfer
operator on L1(T, dm) to itself by

Lh =
df∗mh

dm
where dmh = hdm. It turns out that

Lh =
∑

y∈f−1{x}

1

|f ′(y)|
h(y)

and Lh is uniquely determined by∫
ϕ · (Lh)dm =

∫
(ϕ ◦ f) · hdm, ∀L∞(dm).

By the properties of a transfer operator, L is linear, bounded (‖Lh‖1 ≤
‖h‖1 thus ‖Lnh‖1 ≤ ‖h‖1 so (2) of Ionescu-Tulcea and Marinescu or
Hennion is satisfied) and positive (if h ≥ 0 then Lh ≥ 0). Moreover,
by linearity and positivity we have that L |h| ≥ |Lh|.

We consider the Sobolev space:

W1,1(T) :=
{
h : T→ R, h ∈ L1, h′ exists a.e. and h′ ∈ L1

}
which equals the space of absolutely continuous functions on T. More
precisely, h is absolutely continuous on T means ∀ ε > 0, ∃ δ > 0 s.t. if∑n

i=1(bi − ai) < δ, ai, bi ∈ T, n ∈ N+, then
∑n

i=1 |h(bi)− h(ai)| < ε.
Clearly, W1,1(T) is a linear space endowed with the Sobolev norm

‖h‖1,1 := ‖h‖1 + ‖h′‖1 .

This is a Banach space (actually a Banach algebra) and W1,1(T) ↪→
C0(T) is a bounded inclusion.

Remember that we have the Lasota-Yorke inequality:{
‖Lh‖1 ≤ ‖h‖1 ,

‖(Lh)′‖1 ≤ λ−1
∗ ‖h′‖1 +D ‖h‖1 .

Thus L is a bounded linear operator on W1,1(T). By induction, (3)
of Ionescu-Tulcea and Marinescu or Hennion is also satisfied. So it
remains to check that

L : (W1,1(T), ‖·‖1,1)→ (L1, ‖·‖1)

is compact. For this purpose, we just need to prove that if {hn}n≥1 ⊂
W1,1(T) satisfies ‖hn‖1,1 ≤ C, ∀n ≥ 1, then {Lhn}n≥1 contains a con-

vergent subsequence in L1(T, dm).
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We will use Frechét-Kolmogorov theorem which is an Lp version of
Arzelà-Ascoli theorem, saying that “uniform boundedness” and “equicon-
tinuity” in Lp(Ω) implies pre-compactness in Lp(Ω). For us, p = 1 and
Ω = T.

Definition 5.13 (Uniform boundedness). We say {ϕn}n≥1 ⊂ L1(T, dm)
is uniformly bounded if there exists some C <∞ such that ‖ϕn‖1 ≤ C
for all n ≥ 1.

Definition 5.14 (Equicontinuity). We say {ϕn}n≥1 ⊂ L1(T, dm) is
equicontinuous if

‖ϕn(·+ t)− ϕn(·)‖1 → 0 as t→ 0

uniformly in n. More precisely, ∀ ε > 0,∃ δ > 0 s.t. if |t| < δ, then

‖ϕn(·+ t)− ϕn(·)‖1 < ε, ∀n ≥ 1.

For the sequence {hn}, we define ϕn := Lhn, n ≥ 1, then by Lasota-
Yorke and the assumption we have

‖Lhn‖1 ≤ ‖hn‖1 ≤ ‖hn‖1,1 ≤ C.

So {ϕn}n≥1 is uniformly bounded. Thus it remains to check its equicon-
tinuity. Note that it is sufficient to prove the following:

‖Lhn(·+ t)− Lhn(·)‖1 . |t| ,∀n ≥ 1.

By the Newton-Leibniz formula (Fundamental theorem of calculus),
we have

Lhn(x+ t)− Lhn(x) =

∫ x+t

x

(Lhn)′(s)ds.

This implies

‖Lhn(·+ t)− Lhn(·)‖1 ≤
∫ 1

0

∫ x+t

x

|(Lhn)′(s)| dsdx

≤
∫ 1

0

∫ 1

0

|(Lhn)′(u+ x)| · 1[0,t](u)dudx

=

∫
‖(Lhn)′‖1 · 1[0,t](u)du

≤ C |t| .
Here we have used Fubini’s theorem to exchange the order of the inte-
gral and also applied the second inequality in Lasota-Yorke to ensure
the final step.

To conclude, applying Frechét-Kolmogorov theorem, we obtain that
L is a compact operator. Thus all conditions of Ionescu-Tulcea and
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Marinescu or Hennion’s theorem are satisfied, so we get that L is quasi-
compact.

In the following, our remaining goal is to prove that L is not only just
quasi-compact, but also simple with 1 as the only peripheral eigenvalue.
We formulate this result as a theorem.

Theorem 5.6. The transfer operator L of the expanding maps of the
circle is quasi-compact and simple.

Proof. It is left to prove that L is simple. Let us first show that 1 is
an eigenvalue of L. Indeed, by the same argument as before,

L∗m = m ⇔ 〈ϕ,L∗m〉 = 〈ϕ,m〉, ∀ϕ ∈ C0(T).

⇔ 〈Lϕ,m〉 = 〈ϕ,m〉 ⇔
∫
Lϕdm =

∫
ϕdm

which is true. Thus 1 is an eigenvalue of L∗, in particular 1 ∈ σ(L∗).
Since the spectrum of a bounded linear operator and its adjoint on a
Banach space are the same, 1 ∈ σ(L). As L is quasi-compact (actually
compact from (W1,1, ‖·‖1,1) to (L1, ‖·‖1)), 1 is an eigenvalue of finite

multiplicity. So 0 ∈ F ⊂ [0, 2π) which is finite. Recall that we have

L =
∑
θ′∈F

eiθ
′
Πθ′ + S,

and

Lk =
∑
θ′∈F

eikθ
′
Πθ′ + Sk, ∀ k ∈ N+.

Fix any θ ∈ T, multiply e−ikθ on both sides and we get

e−ikθLk =
∑
θ′∈F

eik(θ′−θ)Πθ′ + e−ikθSk.

Take 1
n

∑n
k=1 on both sides and let n→∞, we get

lim
n→∞

1

n

n∑
k=1

e−ikθLk = Πθ, ∀ θ ∈ F .

This is because when n→∞,

1

n

n∑
k=1

e−ikθSk → 0

and

1

n

n∑
k=1

∑
θ′∈F

eik(θ′−θ) =

{
1, if θ′ = θ,

0, otherwise.
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In particular, Π0 = limn→∞
1
n

∑n
k=1 Lk and it is a positive operator

because L is positive.
Note that for h ≥ 0, we have Lh ≥ 0 as L is positive. Let g := Π01

which is continuous. Then we claim that Lg = g, g > 0 and
∫
gdm = 1.

By the expression of L, Lg = g is trivial. Therefore, if dµ = gdm
then µ is f -invariant by equivalence.

∫
gdm = 1 is also obvious by the

expression of Π0 and Lebesgue’s dominated convergence theorem. By
positivity of Π0, we know that g = Π01 ≥ 0, so it remains to prove
that g is indeed strictly positive.

If g(x) = 0 for some x ∈ T, then since Lg = g, we have

Lg(x) =
∑

y∈f−1{x}

1

|f ′(y)|
g(y) = 0.

So g(y) = 0,∀ y ∈ f−1{x}. By induction, g(y) = 0, ∀ y ∈ f−n{x} for all
n ≥ 1. But the set of preimages of any point is dense in T, because for
any interval I ⊂ T, ∃n ∈ N such that fn(I) = T 3 x, then f−n{x} ∈ I
for this n.

Moreover, since g is continuous then g ≡ 0 which is a contradiction
to
∫
gdm = 1. Therefore, g(x) > 0,∀x ∈ T

Remark 5.4. We can conclude that if ϕ ≥ 0 is continuous, Lϕ = ϕ
and ϕ(x0) = 0 for some x0 ∈ T, then ϕ ≡ 0.

Next, we are going to prove that 1 is the only peripheral eigenvalue
and L is simple. Let h be an eigenvector of L with eigenvalue eiθ, θ ∈ F .
Namely,

Lh = eiθh ⇔ Πθh = eiθh.

We need to prove that θ = 0 and h = λg for some λ ∈ C.
Since we have |Lh| ≤ L |h| and |Lh| =

∣∣eiθh∣∣ = |h|, then |h| ≤ Lh.

By induction, |h| ≤ Lk |h| ,∀ k ≥ 1. This implies

|h| ≤ 1

n

n∑
k=1

Lk |h| , ∀n ≥ 1.

Let n → ∞, we get |h| ≤ Π0 |h|. Using dominated convergence theo-
rem, we have
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∫
Π0 |h| − |h| dm =

∫
Π0 |h| dm−

∫
|h| dm

= lim
n→∞

1

n

n∑
k=1

∫
Lk |h| dm−

∫
|h| dm

=

∫
|h| dm−

∫
|h| dm = 0

Thus Π0 |h| = |h| because they are continuous. Since Πθ is perpendic-
ular to each other and also to S, this shows that L |h| = |h|.

Now we consider

β := min
|h|
g

=
|h(x0)|
g(x0)

for some x0 ∈ T.

Then |h| − βg has a zero for x0 and it is non-negative. So

L(|h| − βg) = L |h| − βLg = |h| − βg.

By the remark before, we get |h|−βg ≡ 0 thus |h| = βg. So h = eiϕβg
where ϕ ∈ C[0, 2π).

We will show that ϕ− ϕ ◦ f ≡ θ. This would imply

0 =

∫
ϕ− ϕ ◦ fdµ = θ

which gives θ = 0 and ϕ = ϕ◦f . Using the expanding condition again,
ϕ is constant. Thus h = λg for some λ ∈ C.

Let us show that ϕ − ϕ ◦ f ≡ θ. By Lh = eiθh and h = eiϕβg we
have

Lh = βL(eiϕg) ⇔ eiθeiϕβg = βL(eiϕg)

which shows

L(eiϕg) = ei(θ+ϕ)g.

By direct computation, we have

L
(
ei(ϕ−ϕ◦f−θ)g

)
(x) =

∑
f(y)=x

1

|f ′(y)|
ei(ϕ(y)−ϕ(x)−θ)g(y)

= e−i(ϕ(x)+θ)
∑
f(y)=x

1

|f ′(y)|
eiϕ(y)g(y)

= e−i(ϕ(x)+θ) · L(eiϕ)(x)

= e−i(ϕ(x)+θ) · ei(ϕ(x)+θ)g(x)

= g(x).
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Therefore, we have

L
(
(ei(ϕ−ϕ◦f−θ) − 1)g

)
= 0,

which implies∫
L
(
(ei(ϕ−ϕ◦f−θ) − 1)g

)
dm =

∫
(ei(ϕ−ϕ◦f−θ) − 1)gdm = 0.

Taking the real part, we have∫
[1− cos(ϕ− ϕ ◦ f − θ)]gdm = 0

where g > 0 and 1−cos(ϕ−ϕ◦f −θ) ≥ 0. Using the previous remark,
we get cos(ϕ − ϕ ◦ f − θ) = 1 which implies ϕ − ϕ ◦ f − θ ∈ 2πZ.
Since it is continuous on [0, 2π), we get ϕ− ϕ ◦ f − θ ≡ 2πk for some
k ∈ Z. Integrating w.r.t. µ, we have 0 − θ = 2πk. As θ ∈ [0, 2π),
k = 0⇒ θ = 0⇒ ϕ− ϕ ◦ f = 0.

This finishes the whole proof. �

We have proved that on W1,1

L = Π0 + S, r(S) ≤ σ < 1.

Then

Ln = Π0 + Sn.

Hence,

‖Lnh− Π0h‖1,1 = ‖Snh‖1,1 ≤ σn ‖h‖1,1 .

Moreover, Π0h = λg for some λ ∈ C and∫
Π0hdm =

∫
λgdm = λ

∫
gdm = λ.

On the other hand,

Π0h = lim
n→∞

1

n

n∑
k=1

Lkh,

so by dominated convergence theorem,∫
Π0hdm =

∫
hdm.

Thus we get Π0h = (
∫
hdm)g, which shows that there is σ ∈ (0, 1) such

that for all h ∈ W1,1(T),∥∥∥Lnh− (∫ h dm

)
g
∥∥∥

1,1
≤ σn ‖h‖1,1 (5.5)

for some g ∈ W1,1(T) satisfying g > 0, Lg = g and
∫
gdm = 1.
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Using this, one can derive a large deviations principle and a cen-
tral limit theorem for (T, f) with observables in W1,1(T), see for in-
stance [3]. The arguments of course are quite involved. We propose
a different strategy, using the Markov operator and the abstract re-
sults derived above, which will provide an effective LDT estimate and
a CLT.

Note that L1 = 1 if and only if the reference measure m is f -
invariant. This holds for instance when f is the doubling map, but
does not hold in general, hence the transfer operator is usually not a
Markov operator.

However, changing the reference measure for dµ = gdm, where g was
described above, since Lg = g we have that µ is f -invariant. Consider
the transfer operator relative to this reference measure

Qh :=
df∗µh
dµ

,

where dµh := h dµ.
Then Q1 = 1 so this transfer operator is also a Markov operator and

µ is a stationary measure (since
∫
Qh dµ =

∫
h dµ for all h). Moreover,

Q is related to L by
(Qh)g = L(hg),

so

Qh(x) =
1

g(x)

∑
y∈f−1{x}

g(y)

|f ′(y)|
h(y)

which shows that the Markov kernel is given by K : T→ Prob(T),

Kx(y) =
∑

y∈f−1{x}

g(y)

g(x)

1

|f ′(y)|
δy .

That is, Kx is a convex combination of Dirac delta measures supported
on the pre-images of the point x. Since, moreover, for all n ∈ N,
(Qnh)g = Ln(hg), we have that

Qnh−
∫
hdµ =

1

g

(
Ln(hg)− g

∫
hg dm

)
.

Therefore, using (5.5),∥∥∥Qnh− ∫ hdµ
∥∥∥
C0
.
∥∥∥1

g

(
Ln(hg)− g

∫
hg dm

)∥∥∥
1,1

≤ C(g)
∥∥∥Ln(hg)− g

∫
hgdm

∥∥∥
1,1

≤ C(g)σn ‖hg‖1,1 ≤ C ′(g)σn ‖h‖1,1 ,



116 A. CAI, P. DUARTE, AND S. KLEIN

where C(g), C ′(g) <∞ depend only on the W1,1-norms of g and 1
g
.

This shows that the observed Markov system (T, K, µ,W1,1(T)) is
strongly mixing with exponential rate. By Theorem 2.1 and Theo-
rem 2.2 effective LDT estimates and a CLT hold for this stochastic
dynamical system, which then easily translate to effective LDT esti-
mates and a CLT for the deterministic dynamical system (T, f, µ) with
observables in W1,1(T). More precisely, we obtain the following (com-
pare with Theorem 1.22 and Theorem 1.32 in [3]).

Theorem 5.7. Let ϕ ∈ W1,1(T). Given any ε > 0 there are n(ε) ∈ N
and c(ε) > 0 such that for all n ≥ n(ε) we have

µ

{
x :

∣∣∣∣ϕ(x) + ϕ ◦ f(x) + · · ·+ ϕ ◦ fn−1(x)

n
−
∫
T
ϕdµ

∣∣∣∣ > ε

}
≤ e−c(ε)n .

Besides ε, the parameters n(ε) and c(ε) only depend (explicitly) on the
W1,1-norms of ϕ, g and 1

g
.

Moreover, if
∫
ϕdµ = 0 and if ϕ is not a coboundary, which in this

setting means that there is no function η ∈ C0(T) such that ϕ(θ) =
η(θ)− η ◦ f(θ) for all θ ∈ T, then there is σ = σ(ϕ) > 0 such that

ϕ+ ϕ ◦ f + · · ·+ ϕ ◦ fn−1

σ
√
n

d−→ N (0, 1) .

Proof. Let X+ := TN and let P be the Markov measure on X+ with
initial distribution µ and transition kernel K defined above. For an
observable ϕ : T → R, we reserve the notation Snϕ for the stochastic
Birkhoff sums Snϕ : X+ → R,

Snϕ(ω) = ϕ(ω0) + ϕ(ω1) + · · ·+ ϕ(ωn−1),

while the expression of the (deterministic) Birkhoff sums relative to de
dynamics f will be written explicitly.

For every x ∈ T, Kx is supported on the pre-images of x via f . Then
the set Ω of “admissible words” consists of sequences ω = {ωn}n∈N ∈
X+ that satisfy f(ωj+1) = ωj for all j ∈ N. This is, as it should be, a
full P-measure set. Indeed,

Ω =
⋂
j∈N

{
ω ∈ X+ : f(ωj+1) = ωj

}
=
⋂
j∈N

σ−j
{
ω ∈ X+ : f(ω1) = ω0

}
and

P
{
ω ∈ X+ : f(ω1) = ω0

}
=

∫
Kω0 {ω1 : f(ω1) = ω0} dµ(ω0) = 1.

Since µ is K-stationary, P is σ-invariant, so P(Ω) = 1.
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As already established, (T, K, µ,W1,1(T)) is strongly mixing, so ap-
plying the abstract LDT in Theorem 2.1, for n ≥ n(ε) we have that

P
{
ω ∈ X+ :

∣∣∣∣ 1n Snϕ(ω)−
∫
ϕdµ

∣∣∣∣ > ε

}
≤ e−c(ε)n .

On the other hand, let

E :=

{
x ∈ T :

∣∣∣∣ϕ(x) + ϕ ◦ f(x) + · · ·+ ϕ ◦ fn−1(x)

n
−
∫
T
ϕdµ

∣∣∣∣ > ε

}
.

Then since µ is K-stationary,

µ(E) =

∫
Kn
x (E) dµ(x) =

∫
Px
{
ω ∈ X+ : ωn ∈ E

}
dµ(x)

= P
{
ω ∈ X+ : ωn ∈ E

}
= P {ω ∈ Ω: ωn ∈ E}

= P
{
ω ∈ Ω:

∣∣∣∣ϕ(ωn) + ϕ(ωn−1) + · · ·+ ϕ(ω1)

n
−
∫
T
ϕdµ

∣∣∣∣ > ε

}
= P

{
ω :

∣∣∣∣ 1n Snϕ(ω)−
∫
ϕdµ

∣∣∣∣ > ε

}
≤ e−c(ε)n ,

which proves the LDT estimate for the dynamical system (T, f, µ).
Now let us assume that ϕ has µ-mean zero and it is not a coboundary.

We first show that the abstract CLT given by Theorem 2.2 is applica-
ble to the Markov system (T, K, µ,W1,1(T)). Indeed, its ergodicity is
derived exactly as in Proposition 2.2. Moreover, for ψ :=

∑∞
n=0Qnϕ,

if, by contradiction, σ2(ϕ) := ‖ψ‖2
2−‖Qψ‖

2
2 = 0, then exactly as in the

proof of Proposition 2.2 we obtain that ψ(y) = Qψ(x) for µ-a.e. x ∈ T
and Kx-a.e. y ∈ T. This immediately implies that ψ(y) = Qψ(f(y))
for µ-a.e. y ∈ T. But since ψ andQψ◦f are continuous and dµ = g dm,
where g is continuous and bounded away from zero, we conclude that
ψ = Qψ ◦ f everywhere. But then

ϕ = ψ −Qψ = Qψ ◦ f −Qψ ,

showing that ϕ is a coboundary, which is a contradiction.
Then the abstract CLT is applicable, so for all λ ∈ R we have

P
{
ω ∈ X+ :

Snϕ(ω)

σ
√
n
≤ λ

}
→
∫ λ

−∞
e−

x2

2
dx√
2π

.

As before, we can show that

µ

{
x :

ϕ(x) + · · ·+ ϕ ◦ fn−1(x)

σ
√
n

≤ λ

}
= P

{
ω :

Snϕ(ω)

σ
√
n
≤ λ

}
,

which establishes the CLT for the dynamical system (T, f, µ). �
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5.3. Toral automorphism. Let A =

(
2 1
1 1

)
be the corresponding

matrix action of Arnold’s cat map. Obviously detA = 1. Let the cat
map f : T2 → T2 be such that f(x) = Ax mod 1. Simple calculation

gives λ± = 3±
√

5
2

with λ+λ− = 1. In the following we denote λ := λ+.
We have that

Avu = λvu, Avs = λ−1vs,

where vu, vs are the corresponding eigenvectors of λ and λ−1 and thus
〈vu, vs〉 = 0.

Remark 5.5. In general, we may consider symmetric matrix A ∈
SL(2,Z) with aij > 0, i, j = 1, 2.

The transfer operator corresponding to f is

Lh = h ◦ f−1

where L is uniquely determined by∫
T2

ϕ · Lhdm =

∫
T2

ϕ ◦ f · hdm, ∀ϕ ∈ L∞(dm).

In fact, (f,T2,m) is mixing. Moreover, without loss of generality we
assume

∫
T2 hdm = 1.

We will prove that we can get exponential mixing. The main tool
we use is Fourier Analysis. By direct computation,

(L̂nh)k =

∫
T2

e−2πi〈k,x〉Lnh(x)dm(x)

where k = (k1, k2) ∈ Z2, x = (x1, x2) ∈ T2 and 〈k, x〉 = k1x1 + k2x2.
For simplicity, we assume that h ∈ Cr(T2) with r > 2, then∣∣∣ĥ(k)

∣∣∣ ≤ ‖k‖Cr
(‖k‖+ 1)r

.

Using the unique representation and the symmetry of A, we have

(L̂nh)k =

∫
T2

e−2πi〈k,Anx〉h(x)dm(x) =

∫
T2

e−2πi〈Ank,x〉h(x)dm(x).

which shows that (L̂nh)k = (ĥ)Ank.
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Hence, ∀ϕ, h ∈ Cr(T2) and ∀n ∈ N, we have (using Paserval’s
Theorem in the first inequality)∣∣∣∣∫ ϕ · L2nhdm−

∫
ϕdm ·

∫
hdm

∣∣∣∣ ≤ ∑
k 6=(0,0)

|ϕ̂k|
∣∣∣ĥA2nk

∣∣∣
≤
∑
k∈Z2

‖ϕ‖Cr · ‖h‖Cr
(‖k‖+ 1)r(‖A2nk‖+ 1)r

≤
∑
k∈Z2

‖ϕ‖Cr · ‖h‖Cr
(‖A−nk‖+ 1)r(‖Ank‖+ 1)r

.

To obtain further estimates, note that since k = avu + bvs with
‖k‖2 = a2 + b2, then

Ank = aλnvu + bλ−nvs

and

A−nk = aλ−nvu + bλnvs.

Therefore,

‖Ank‖2 +
∥∥A−nk∥∥2 ≥ (a2 + b2)λ2n = ‖k‖2 λ2n,

so

(‖Ank‖+ 1)(
∥∥A−nk∥∥+ 1) ≥ ‖k‖λn

which gives∣∣∣∣∫ ϕ · L2nhdm−
∫
ϕdm ·

∫
hdm

∣∣∣∣ ≤ Cr ‖ϕ‖Cr ‖h‖Cr λ
−nr

where Cr is a constant depending only on r.
This proves the exponential mixing (decay of correlation) of the

transfer operator.
Now let us introduce the Sobolev norm. Consider C∞(T2,C), we

define

‖h‖2
p :=

∑
k∈Z2

〈k〉p
∣∣∣ĥk∣∣∣2 , 〈k〉 := 1 + ‖k‖2

and

‖h‖2
pα :=

∑
k∈Z2

〈k〉pα(k)
∣∣∣ĥk∣∣∣2

where α ∈ C0(P, [−1, 1]) is defined in the following way.
Fix some σ ∈ (λ−1, 1), then ∃K > 0 such that

〈Av〉 ≥ σ−2〈v〉, ∀ v ∈ I+, ‖v‖ > K,

〈Av〉 ≤ σ2〈v〉, ∀ v ∈ I−, ‖v‖ > K,
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where I± are neighborhoods of vu, vs and we denote I = A±I± ⊂ I±.
Then α is defined as

α(k) =


1, if k ∈ I+,

−1, if k ∈ I−,
others, monotonic.

For v ∈ P\{I+ ∪ I−}, there exists c > 0 such that d(v, Av) ≥ c.
Therefore, ∃ γ > 0 such that

α(v)− α(A−1v) ≥ γ ⇔ α(v)− γ ≥ α(A−1v), ∀ v ∈ P\{I+ ∪ I−}.

We want to obtain Lasota-Yorke type inequality for the Sobolev
norm. By computation, we have

‖Lh‖2
pα =

∑
k∈Z2

〈k〉pα(k)
∣∣∣ĥAk∣∣∣2 =

∑
k∈Z2

〈A−1k〉pα(A−1k)

〈k〉pα(k)
· 〈k〉pα(k)

∣∣∣ĥk∣∣∣2 .
If k ∈ I+ and k ≥ K, we have

〈A−1k〉α(A−1k)

〈k〉α(k)
=
〈A−1k〉
〈k〉

≤ σ2.

If k ∈ I− and k ≥ K, we have

〈A−1k〉α(A−1k)

〈k〉α(k)
=
〈k〉
〈A−1k〉

≤ σ2.

If k /∈ I+ ∪ I−, let B := ‖A−1‖, then

〈A−1k〉α(A−1k)

〈k〉α(k)
≤ 〈A

−1k〉α(k)−γ

〈k〉α(k)
≤ B · 〈k〉−γ.

Hence, denote

Γ :=
{
k ∈ Z2 : 〈k〉 ≤ max{(σ−2B)

1
γ , K} := L

}
which is a finite set. Then

sup
k/∈Γ

〈A−1k〉α(A−1k)

〈k〉α(k)
≤ σ2.
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Therefore, denote ‖h‖2
ω :=

∑
k∈Γ

∣∣∣ĥk∣∣∣2

‖Lh‖pα =

√√√√∑
k∈Γ

〈A−1k〉pα(A−1k)

〈k〉pα(k)
· 〈k〉pα(k)

∣∣∣ĥk∣∣∣2 +
∑
k/∈Γ

· · ·

≤
√
Lp ‖h‖2

ω + σ2p ‖h‖2
pα

≤ C ‖h‖ω + σp ‖h‖pα .

This is the Lasota-Yorke inequality that we want.
The following goal is to prove that for toral automorphism, the trans-

fer operator is quasi-compact on C∞(T2,C, ‖·‖pα). In fact, it is possible

to prove that there is a Lasota-Yorke also on ‖·‖pβ where ∃ c > 0 s.t.

β + c ≤ α. Moreover, ‖·‖pβ is weakly compact on the space ‖·‖pα. By
Hennion, we get quasi-compactness.

We finish this subsection with a remark.

Remark 5.6. If we consider Cr, Cα, the transfer operator will have
spectral radius larger than 1. Compared with our Markov operator,
controlling the Sobolev space here is like controlling the future when
we consider observables depending on all coordinates.

6. Limit laws for hyperbolic systems

7. Partially hyperbolic systems

These notes may eventually become a book. Any suggestions for
improvement are welcome. A more up-to-date version of certain parts
of this manuscript can be found in our recent preprint [2]. The sec-
tions on transfer operators and uniformly hyperbolic (or even partially
hyperbolic) maps may expand. A proof of the abstract CLT will be
included (if we manage to come up with an argument ourselves, or find
someone to help us with the translation from Russian of [4]). Well, we
have a very long way to go.
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