STATISTICAL PROPERTIES FOR CERTAIN
DYNAMICAL SYSTEMS

AO CAI PEDRO DUARTE, AND SILVIUS KLEIN

1. INTRODUCTION TO THE MAIN TOPICS OF THE COURSE

1.1. Additive random processes. Let &y, &1, ...,&-1,&n, ... be ase-
quence of independent and identically distributed (i.i.d.) real random
variables. Let

Spi=8& +& + -+ &
be the partial sum process and let
1 1
= (Gt &+ )
n n
be the average partial sum process.
Question. What is the behavior of these averages when n — co?

Remark 1.1. Recall that two random variables & and & are identi-
cally distributed if P{{, € E} = P{& € E} for any Borel measurable
set £ C R. In this case E§ = E& and in fact E¢(&;) = E¢(&,) for any
integrable function ¢: R — R.

Recall also that the random variables &, ..., &, are independent if
for any Borel measurable sets Ey,..., E, C R,

P{£1EEl/\-“/\anEn}:P{glGEI}"'P{fnGEn}'

Theorem 1.1 (The law of large numbers - LLN). Given i.i.d. sequence
0,61, &n-1,&n, . .. of real random wvariables, if E&y < oo then

1
=S, > E&  a.s.
n

In particular, convergence in probability also holds. That is, Ve > 0,

P{‘lsn—]EgO
n

>€}—>0 as n — o0.

Question. It is natural to ask if there is a rate of convergence to 0 of
the probability of the tail event above. It turns out that there is, as

shown by the large deviations principle (LDP) below.
1
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Theorem 1.2 (LDP of Cramér). Assume that the common distribution
of the i.i.d. sequence of real random wvariables £y,&1,. .., &n1,&n, - - -
satisfies a certain growth condition and is non-trivial. Then Ve > 0,

P{kl&f—E@
n

> e} =e " g5 0> oo,

where c(€) < coe® for some cy > 0.
More precisely, assuming that the common distribution has finite ex-
ponential moments:

M(t):=E (™) <o VteR,

it follows that

1 1
lim —logIP’{‘—Sn — E&
n

n—oo M

> e} = —c(e)

where
c(€) = sup (te — log M (t))

teR
is the Legendre transform of log M (t).

This rate function c(e) is strictly convex near ¢ = 0, with ¢(0) = 0,
d(0) =0 and "(0) > 0, so that c(€) < coe>.

Remark 1.2. The LDP is a very precise but asymptotic result. We
are usually more interested in finitary, albeit less precise results, which
will be referred to as large deviations type (LDT) estimates. A typical
such result is the folllowing.

Theorem 1.3 (Hoeffding’s Inequality). Assume the much stronger
growth condition & < C a.s. Then Ye > 0 the following holds for
all n € N:

Pﬂl&—E@
n

> e} < e~ (20) ¢
Question. What is the typical size of the sum process S, — nlE&y?
Note that by the LLN, almost surely we have

Sn — nIEfo

n

— 0,

which implies that S,, — nE§y < n. It turns out that from a certain
point of view, S, — nEy, =< y/n. More precisely, the following central
limit theorem (CLT) holds.
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Theorem 1.4 (CLT of Lindeberg-Lévy). Consider an i.i.d. sequence

0,61, &1, &n, ... of real random wvariables and assume that the
variance o* = E&2 — (E&)? € (0,00). Then for all [a,b] C R,
— nkE b 22
P{Mé[a,b]}—) ez d as mn — oo.
ov/n a V2

In other words, with the appropriate scaling we have the convergence
in distribution to the standard normal distribution

Sn—nE§0 d

1.2. Multiplicative random processes. Let y be a probability mea-
sure on the group of matrices GLy(R). Given go, g1, .-, 901, Gn, - .- an
i.i.d. sequence of random matrices chosen according to the probability
b, consider
I := gn—1--- G190

the corresponding multiplicative process.

Recall that for a matrix g € GL2(R), the norm is its maximal ex-
pansion

9]l = max {|go]]
lvli=1

while the co-norm is its minimal expansion
-1

m(g) = min [lgo] = flg”"|

The LLN for additive random processes has the following analog for
multiplicative random processes.

Theorem 1.5 (Furstenberg-Kesten). Assuming the integrability con-
dition E (log ||lgll) du(g) < oo, there are two numbers Lt () > L™ (u)
called the maximal respectively the minimal Lyapunov exponents of u
such that

Liogl Tl = 15 (1), as.
and 1 !
—log|[ILH| ™" = L™ (n),  as.
In particular we also have convergence in probability: Ve > 0,

]P’{l

—log||IL,|| = L™
~logl[IL]| — L (u)

>e}—>0 as mn — oo.

Instead of the maximal (or minimal) expansion of the random matrix
products, we may consider the expansion of any vector. That is, given
v € R?, v # 0 consider the random walk {g,_1---gigov: n > 0}.
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Theorem 1.6 (Furstenberg-Kifer's non-random filtration). For any
given vector v € R%, v # 0, either

1
—log|| || = LT () as n — oo,
n

or

1
—log|[IL,v|| = L™ (1) as n— oo.
n

Remark 1.3. It turns out that under certain generic conditions to
be defined in the future (namely the irreducibility of the measure u),
we have that Vv € R% v # 0 the almost sure limit is the maximal
Lyapunov exponent:

1
—log||ILv]| = LT (i) as.
n

Moreover, if L*(u) > L™ () then

1
B (S togltel ) - £+
n
uniformly in v.

Question. It is natural to ask if in this multiplicative random setting
there are analogues of the LDP, LDT and CLT from the additive set-
ting. As shown below, the answer is affirmative, at least in the generic
setting. The precise statements will be provided later.

Theorem 1.7 (LDP - Le Page). Under generic assumptions, if L™ () >
L~ (n), thenVv € R*, v#£0 and Ve > 0,

1
]P{‘—logHHnH - L+(,u)‘ > e} =e " 45 n— 0.
n

Theorem 1.8 (LDT - Duarte, Klein). Under generic assumptions, if
LT (p) > L™ (u), then Vv € R?, v#£0,Ve>0 andVn € N,

1
P{‘—logHHnH - L+(u)‘ > e} < Ce~om
n

for some constant C' < 0o and c(e) > 0.

Theorem 1.9 (CLT - Le Page). Under generic assumptions, there is
o € (0,00) such that Vv € R%, v # 0,

P{ og|[ILv|| = nL™(p) € [a, b]} N / e T dr as mn — oo.
o\v/n “ V2T
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1.3. Observed dynamical systems. Let (M, f) be a dynamical sys-
tem where M is a compact metric space and f : M — M is continuous.
Consider an appropriate f-invariant measure v € Prob(M).

Remark 1.4. Recall that v is called f-invariant if f.v = v, which is
equivalent to saying that v(F) = v(f~*(FE)) for all Borel measurable
EcM.

Moreover, v is called ergodic w.r.t. f if all f-invariant sets (i.e. F
such that £ = f~!'(F)) are of v measure 0 or 1. Note that ergodic
measures are extremal points in the the space of f-invariant measures
(this space is convex and weak-* compact).

The triple (M, f,v) is called a measure-preserving dynamical system
(MPDS). Given an observable £ : M — R in an appropriate space of
functions, the quadruple (M, f,v,§) is called an observed MPDS.

For all iterates j, consider the real-valued random variable on M

§i=8of.
Since v is f-invariant, and hence f/-invariant for all j, the sequence

0,61 .,&n1,&n, - - - s identically distributed. However, in general this
sequence is not independent.

Consider the sum process, that is, the Birkhoff sums

S i=E8+8oft -t lofI =G+t
Birkhoft’s ergodic theorem is a generalization of the LLN in this setting.

Theorem 1.10 (Birkhoff’s ergodic theorem). Assume that v is ergodic
w.r.t. f and that [,,|¢] dv < oo. Then

1
—Sp€ — /gdy v-a.e.
n
In particular the convergence in measure also holds: Ve > 0,

1
y{xeM: gSnf(x)—/Mfdy

>e}—>0 as mn — oo.

Question. A fundamental problem in ergodic theory is to establish
statistical properties like LDP, LDT, CLT for various kinds of observed
dynamical systems.

In other words, the question is to determine for which dynamical
system (M, f), for which appropriate choice of f-invariant measures v
and for which kinds of observables £ one has an LDT estimate

1
V{$€M: ‘Esnﬁ(x)—/Mfdl/

>cpgceeen
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or a CLT

u{xe M : S"S(x)a_\/%fgdy € [a,b]} —>/abe’z2 \;Z;_ﬂ

A short but vague answer is that systems with some hyperbolicity
should satisfy such statistical properties. The question is extremely far
reaching, and for now it only has a very incomplete rigorous answer.

Some of the main tools used to address it, which will make their entry
in this course in due time, are the transition (or Markov) operator and
the transfer (or Ruelle) operator.

1.4. The moment method and Bernstein’s trick. Let £ be a ran-
dom variable on some probability space (2, F,P). The distribution (or
law) of ¢ is the probability measure p on R given by

pe(E)=P{¢ € E} =P {¢'E}

where £ C R is Borel measurable. In other words, pe = ,P. Given a
random variable £ and p € Prob(R), we write £ ~ p when pe = p.
Example 1. The continuous uniform distribution on some interval
la,b] CRis
1
Hunif = m]l[a,b]dm

which is absolutely continuous to the Lebesgue measure m on R.
Example 2. The standard normal distribution

N(0,1) = G(t)dm
where G(t) = #e_é is the Gaussian.
Remark 1.5. The distribution of a random variable ¢ determines its

expectation, standard deviation, moments, etc. For example, its ex-
pectation satisfies

B = | aduc(a).

More generally, if ¢ : R — R is Lebesgue integrable, then

Ep(¢) = / (@) dpe(z).
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In fact, by the change of variables formula we have
Bo(§) = | plew)dP(w)
Q
~ [ ela)ds.B@
R
— [ ele)de(z).
R

We recall the meaning of random variables being identically dis-
tributed and independent in the following.

Definition 1.1. & and & are identically distributed if g, = pig,.
&1,&, -+, &, are independent if

H(grtn) = Mgy X =00 X e,
Namely, the joint distribution is precisely the product measure.

From now on, let us fix some notations as follows.

¢ is the real random variable.

= [E€ is the expectation of &.

o =E(§ — p)? =E& — p? € [0, 00] is the variance of &.

E¢™ is called the n-th moment of £. By the Holder inequality we
have E£ < (]E{Q)% and E£2 < (E£4)% etc. Note that working with even
moments avoids negativity.

The following lemma is trivial but extremely useful throughout prob-
ability theory.

Lemma 1.1 (Markov’s inequality). If X > 0 and A > 0 then
EX
P{X >} < "

Proof. Denote £ = {X > A}, then we have EX > [, XdP > AP(E).
J

We will use Markov’s inequality to prove weak LLN and strong LLN
respectively under some minor additional conditions.

Theorem 1.11 (Weak LLN). Given i.i.d. sequence &y,&1,. .., &n—1,n, - - -
of real random variables, if B2 < oo then Ve > 0,

8

Proof. Without loss of generality, we may assume that g = 0. Then it
is enough to show P{i—% > 62} =P {S? > n?¢*} — 0 as n — oo.

1
—5n — E&o
n

>e}—>0 as n — o0.
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By Markov’s inequality, we have
SZ
n2e?’

Note that S? = (Z;:& £)? = Z;:ol £+ >, 21, i€k Taking expecta-
tions on both sides, we obtain

n—1
ES? = ZEg +) E(4&) = Y _EE = nE.
=0

J#k

]P’{52 >n 62} < —n

Here the second equality uses the independence of the random vari-

ables.
This shows that

E52
P{32>n62}< —0 as n— o0.
ne2

This finishes the proof of weak LLN. U

Remark 1.6. If X,, — X a.s. then X,, — X in probability. In general,
the converse is not true. However, if Ve > 0 we have

> P{X, - X|> €} <o,

n=0

then X,, — X a.s. This is ensured by Borel-Cantelli Lemma.

Theorem 1.12 (Strong LLN). Given i.i.d. sequence &y,&1, ..., &n—1,&n, - - -

of real random variables, if BE; < oo then % — i a.s.

Proof. Without loss of generality, we may again assume p = 0. By
Remark it is enough to show P{S; > n'e'} < -5 where ¢ is a
constant.

By Markov’s inequality, we have

S4

ntet’

]P’{S4 >n 64} <

By direct computations and use the independence condition we get
ES?} = O(n?). Therefore,

1
P{S4>ne4}<——>0 as n — oo.
n?
O

In the following, we are going to prove the following LDT estimates.
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Theorem 1.13 (Cramér’s inequality). Assume that the common distri-
bution of the i.i.d. sequence of real random variables &, &1, ..., En_1,&n, - - -
satisfies a certain growth condition and o® > 0. Then Ve > 0,

|

where C(€) = Cye? > 0 with constant Cy > 0.

1 ~
Sy — ,u‘ > e} <2e7 ¢ gs o — oo,
n

We introduce the Bernstein’s trick first.
Let X be a random variable and A € R. Then

X > e X >e? V>0

By Markov’s inequality,

E(etX)
et )

P{X > A} =P{¥ >e"} <

which gives P{X > A} < e E(e!¥).

Definition 1.2. The function M : R — (0,00) defined by M(t) =
E(e!™) is called the moment generating function of X while ¢(t) =
log M (t) is called the cumulant generating function of X.

Proof of Theoren{I.15 . Without loss of generality, assume p = 0. Note
that it is enough to estimate P {S,, > ne}, the other part P(—S,, > ne)
is the same. This is why the coefficient 2 appears in the r.h.s. of the
inequality.

By Bernstein’s trick, we have

P{S, > ne} < e ME(en).

Typically, E(e’*") can be exponentially large. But if we can prove
something like

E(etsn) < 6nLt2
then we would have
P{S, > ne} < p—ntepnLt? _ ,—n(te—Lt?) _ ,—nc(e)

It is easy to check that c¢(e) = ;-€? is the maximum value of te — Lt?.

Thus it is enough to estimate E(e" ).
Using the independence condition, we have

E(e!5") = E(e') - . - E(efn-1) = (E(e'))" = ¢"Ce®),
Therefore,

]P){Sn > ne} < @_”teencso ) — e—n(te—050 (t))'
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Let Ce, (€) := sup;cp (te — Ce, (). This is called the Legendre transform
of C¢,(t). Thus we have

P{S, > ne} < e Cen(©),

Since ;1 = 0 and o > 0, it is straightforward to check that Cg,(¢)

satisfies C¢,(0) = 0, Cf (0) = 0 and CY (0) = 0 > 0. So Cg,(t) = _—

when || < 1. This gives us C,(€) ~ Cye? > 0 with constant Cy > 0.
This finishes the proof. U

In the rest of this section, we are going to prove the CLT of Lindeberg-
Lévy.
We first recall some definitions.

Definition 1.3 (Convergence in distribution). X, 4y X if Ix, — Jx
in the weak* topology. More precisely, [, gdux, — [z g9dux, Vg €
Cu(R).

Remark 1.7. Almost sure convergence implies convergence in prob-
ability, which further implies convergence in distribution. In general,
the inverse directions are not true.

Definition 1.4. The cumulative distribution function (CDF) of a ran-
dom variable X is

Fx(t) =P(X <t),Fx :R — [0,1]

which is non-decreasing. This implies that Fx is continuous almost
everywhere.

We list a useful Proposition below without proof.

Proposition 1.2. X, -5 X < Fx, (t) — Fx(t) for all t which is a
continuous point of Fx.

For convenience, we recall the CLT below

Theorem 1.14 (CLT of Lindeberg-Lévy). Consider an i.i.d. sequence
0,61,y &n1,&n, ... of real random wvariables and assume that the
variance o* = E&E — (E&)? € (0,00). Then for all [a,b] C R,

p { S, — nE& b dz

o E[a,b]}—> ae‘ N

In other words, with the appropriate scaling we have the convergence
in distribution to the standard normal distribution

Sn_nEgo d

w3,

as n — Q.
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Proof. Without loss of generality, we can assume that g = 0 and 02 = 1
so that we just need to prove

Sn d

The proof follows from Lévy and we will use Fourier analysis.
Define the characteristic function of a random variable X by

ox i R—C, ox(t) =E("™) = / ety ().
R

This is the Fourier transform of .
Recall that Lévy’s continuity theorem says the following:

X, -5 X < oy (t) = px(t),Vt € R.

This indicates the phenomenon that px, converges in the weak* topol-
ogy if and only if its Fourier transform jix, converges for all ¢.
Moreover, we list some properties of x (t) = E(eX).

e px(0) =1,

e If X subjects to N (0,1), then uy = G(t)dm and px(t) =
N t2
G(t)=e 7,

® Pex = ()OX<Ct>7
e If XY are independent, then px.y = ¢x - ¢y.

By the properties, we get

Psu(t) = ¢ H o6 (7=) = lea( ="

By direct computations, we have ¢, (0) = 1,9 (0) = ip = 0 and

gpé’o(O) = —0?=—1.
Therefore, by Taylor expansion we obtain

L —()?/2+0(()°)
o) = o TG,
n
This proves that
s, () = e_%“’(%),

n

which implies
t2
. (f) —e 2 as n— oo.
5 (1)

The proof is finished by using Lévy’s continuity theorem. O
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2. STOCHASTIC DYNAMICAL SYSTEMS

2.1. Strongly mixing Markov chains. To prove LDT and CLT for
dynamical systems, we have to work with certain types of Markov
chains (which are non-independent processes in general).

Example. LDT for multiplicative random processes.

Given pu € Prob.(GLy(R)) and assume some generic condition, for
an i.i.d. sequence {g,}n>o and I, := ¢,,—1 - - 9190, we have that Vv €

R2 v #£ 0
]P’{ ! e} < Ceom
n

for some C' < 0o and ¢(€) > 0.

In fact, we may relate the multiplicative process to a Markov chain
in the following sense. For simplicity, let us try n = 3 first. For any
v € S, we have

log|| Tyl — L ()| >

||9190 ||

92919
| g291 900 || + log o + log||gov]]-

9190 ]| ll90

Denote 3 = supp(p) C GLy(R). Define ¢ : ¥ x St — R by ¢(g,v) =
log||gv||. Let w € @ = X and w = {g;}i>o. Define Z¥ : Q@ — X x S' by

Z3(w) = (95, ngi—igvfu) j > 1and ZJ(w) = (go,v). Then we obtain

2 Togllgagrgovll = 3 [p(Z50)) + 9l Z3()) + ol Z5(w))]

In general,

510g||9291907)||_ [ 0g

n—1
logll Ml = -3 p(Z(w)).
] 0
where ¢(g,v) = log||gv|| and {Z, }n>0 is a Markov chain with values in
¥ x S! and transition (go,v) — (g1, 12 o H> which is precisely the under-
lying fiber projective dynamics of the multiplicative random process.
Therefore, in order to prove LDT and CLT for multiplicative pro-
cesses or other types of dynamical systems, we need to study appropri-
ate Markov chains. Let us begin with a simple model.
Model: subshift of finite type.
Let ¥ = {1,--- ,n} be afinite space of symbols and let P = {p;; }1<; j<n
be a stochastic matrix. Namely,

n
Vi<i<n, Zpij =1 py; >20,V1I<i,j<n.
j=1
P can be seen as a transition matrix giving the transition probability
from 7 to j by p;;.
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Let ¢ = (q1,- -+ ,qn) be a probability vector satisfying ¢; > 0, V1 <
i<nand > ¢ =1

Definition 2.1. ¢ is P-stationary if ¢P = ¢. That is

n
q; = ZQipij7V1 <j<n.
i=1
Remark 2.1. Every stochastic matrix P has at least one stationary
measure. Moreover, if P is primitive which means that 3m € Z* such
that P} > 0,V1 < 4,5 < n, then 3! stationary vector ¢ and Pj; — ¢;
exponentially fast for any 1 <17 < n.

In the following, we are going to define the Markov measure. Let us
begin with some notations.

X+ = EN = {{xn}nzo Ty € Z}

BT = o- algebra generated by cylinders of the form

O[iOW" >in] :{I'GX+ tXo = 1p, - ,l'n:in}.
Given ¢ a probability vector and P a stochastic matrix, define
]P)(%P)(C[io) T 7Zn]) = QioPioli ce Pin_lin-
This is a pre-measure. By Carathéodory’s extension theorem, this pre-
measure has a unique extension to a measure on Bt called Markov
measure.

Let 0 : X* — X be the forward shift. Note that if ¢ is P-stationary,
then P4 py is o-invariant. Therefore, (X, 0, P4 py) is an MPDS called
a subshift of finite type. Moreover, if P is primitive, then (X%, o, P, py)
is exponentially mixing (hence ergodic).

A Markov chain with values in X is a sequence of random variables
{Z,}n>0 on some probability space (2, F,P), Z, : Q — ¥ satisfying
the Markov property.

]P{Zn-l—l :]|Zn =, 7ZO :ZO} :]P){Zn—i-l :]}Zn :Zn}

A Markov chain {Z, },>¢ is said to have an initial distribution ¢ and
a transition P if

P{Zy =i} = q,

P {Zn+1 = j‘Zn = Z} = Dij-

By Kolmogorov, there are such Markov chains on (X, B*, P, py). In
fact, the Markov chain {Z;};>0 is precisely the projection Z; : X* — ¥
defined by Z;(x) = z; for any j > 0.

Now let us consider a more general setting.
Let (M, F) be a measurable space. M is a compact metric space and
F is the Borel o-algebra on M.
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Definition 2.2 (Markov kernel). A Markov kernel K (x, F) (which can
be interpreted as the probability of x transitioning to E) is a function
K : M x F — |0, 1] such that

(1) Vo € M, E — K,(F) is a probability measure on F,
(2) VE € F, K(-, F) is F-measurable.

Remark 2.2. In practice, we may assume that z — K, = K(z,-) €
Prob(M) is continuous which in particular impies (2). In other words,
we can think of a Markov kernel as a continuous function K : M —
Prob(M) where we interpret K, as the probability of transitioning from
x to somewhere.

Definition 2.3 (Stationary measure). u € Prob(M) is called K-stationary
if = [, Kodp(z) in the sense that u(E) = [,, K,(E)du(z), VE € F.

Now we can define the Markov measure.

Given m € Prob(M) and K a Markov kernel, by Kolmogorov there
exists a unique probability measure Pr = P(r k) on X+ = MY, BT =
o-algebra generated by the cylinders of the form:

C[Ao, s 7An] = {l’ = {xn}nzo € )(Jr C Xy € AJ,VO < j < TL} R
where all A; € F. It is easy to check that

Pls.sc) (C[Ao, - ,An]):/AO /A/A VK, (21) - - - Ay, (a)dm(x0).

Note that If ¢ : X* — R, then E-(¢) = [, ¢dP;.

A Markov chain {Z,, : Q@ — M} is a sequence of random variables
with values in M on the probability space (€2, F,P) satisfying the fol-
lowing Markov property.

P{Zy1 € E|Zn,-+ ,Zo} =P{Zys1 € E|Z,} .

The Markov chain {Z,},>¢ is said to have initial distribution 7 and
transition K if

P{Z, € E} = n(FE),

P{Zys1 € E|Z, =2} = K,(E).

Example: Q = X* = MY, F = Bt = o-algebra generated by
cylinders. P =P k), Zn : Xt = M, Z,(x) =2,YVn >0 .

Note that if 7 = 9, then we write Ps, := P, and E;, := E,. Any
K-stationary Markov chain can be realized as the example because Z,, :
Q0 — M can always be written as Z,, = ¢,0Z, when Z(w) = {Z,(w)},. €
Xt and e,({Z,(w) }n>0) = Zn(w) is the standard projection on to the
n-th coordinates.
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If pu is a K-stationary measure, then a (u, K') Markov chain {Z, },>¢
is stationary. More precisely,

P{Zye Ey, -, Z, € B} =P{Z; € Ey, - , Zjzn € E,},Vjn>0

where E; € F is arbitrary. Moreover, the Markov shift (X, o) is
P,-invariant so (X', 0,P,) is an MPDS.
The powers of the Markov kernel can be derived inductively:

K™z, B) = /M K(y, E)K"(y).

Definition 2.4 (Markov system and strongly mixing). If p is K-
stationary, then (M, K, u) is called a Markov system. It is strongly
mixing if K)' — p exponentially fast Vo € M in the weak® topology.
More precisely, V¢ € L>®(M),

[ cwarzw) - [ @(y)du(y)H <ol (@)

o0

holds Vn € N where C' < 0o and p € (0, 1).

We may also consider the same concept from a different perspective,
as we shall see below.

Definition 2.5 (Markov operator). Given a Markov system (M, K, u),
the Markov operator @ = Qg : L>®°(M) — L*(M) defined by

(Qp)(z) = /M P()AE, ().

The n-th iterates are

@) = [ [ plaahe (o) (o) = [ i,

Therefore, (2.1) is equivalent to
‘ (Q"p)(x) — / wdu‘
M

2.2. Large deviations for strongly mixing Markov chains. We
first recall some definitions. We begin with

Deterministic dynamical systems (DDS) (M, f).

Let M be a metric space and let f : M — M be a continuous
map. Once the initial state of the system xq = x is fixed, then z, =
f™(zo),n > 0 are all determined.

A probability measure p € Prob(M) is f-invariant if f,u = pu. Equiv-
alently, [\, 0@du(x) = por Vo € Co(M), [, ¢(f(x))du(z) = [ pdp.

<Cp" el Yn e N.

o0
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The triple (M, f, i) is called a measure preserving dynamical system
(as a convention, we omit the Borel o-algebra on M).

A subset E C M is called f-invariant if f~}(F) = E. Equivalently,
rel & flr) e Forx € E& dpp)(E) = 1. pis f-ergodic if £
is f-invariant = p(E) = 0 or 1. Given an observable ¢ : M — R,
then o(f™(z)) is the observed n-th state of the system which is to be
considered.

Stochastic dynamical system (SDS) (M, K).

Let M be a compact metric space and let K : M — Prob(M), z —
K, be a continuous kernel. If zy = x is the initial state of the system,
the next state x; is not determined like in the DDS case by a transition
law f. It is known only with a certain probability: P{x; € E} =
Ko (E). The iterates of K are K = [, K} dK,(y).

p € Prob(M) is called K-stationary if K %y = p in the sense that
Joy Kodp(x) = p. The triple (M, K, j1) is a Markov system.

E C M is K-invariant if x € F < K, (F) = 1. A K-stationary
measure 4 is ergodic if whenever E is K-invariant, we have u(FE) = 0
or 1. If ¢ : M — R is an observable, we will consider

@@ = [ ez = [ [ ke @) ).

Example 1. Any DDS (M, f) is itself an SDS. That is, M —
Prob(M),z — ().

Example 2. p € Prob.(GLy(R)),YX = supp(u) and {gn}n>0 is a
sequence of i.i.d. matrices chosen with law p. We may consider the
kernel K on ¥ x S! as follows K : ¥ x S! — Prob(X x S') such that
K(go,5) = I X 8g5o. Then (X x S', K) is an SDS.

Let us formally talk about the Kolmogorov extension. Let (M, K, )
be a Markov system. Denote Xt = ]\/[N {x ={zp}nz0xn € M} If
7 € Prob(M), then 3P, € Prob(X™) s.

P, (C[FEo]) = 7(Ep).

PW(C[EQ, El]) - fEO fEl 1de0(.T1)d7T(I'0).

If f: X" — R, then

E-(f)= [ Fflxo,-- an, - )dKy(21) - Ko,y (20) - - dm (o).

X+

When 7 = §,, we simply write E, and P,. When © = p which is
K-stationary, we write E, = E and P, = P.

We have already defined the Markov operator in Definition Here
we consider () defined on the space of continuous functions on M.
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There are some basic properties of the Markov operator (). Let us
give two examples.

(1) Q1 =1,
(2) 1Q¢]lo < llpllsg
(3) If ¢ > 0, then Qyp > 0.

The dual of @), denoted by Q*, acts on the space of probabilities
Prob(M). By definition, we have (¢, Q*v) = (Qp,v) for any ¢ €
C°(M) and v € Prob(M). In other words, Q*v is the probability on
M s.t.

/gde*I/:/ Qedy, Yo € C'M).
M M

Note that p is K-stationary < Q*u = p.

In practice, the assumptions in Definition [2.5|is unreasonably strong,
primarily because of ¢ € L>(M) where L*™ is too big. We are going
to replace it by something weaker.

Let (&,]]|l¢) be a Banach space where & C C°(M) is Q-invariant in
the sense that ¢ € € & Qp € €. Moreover, we assume the constant
function 1 € € and the inclusion of & C C°(M) is continuous, namely
el < Chllelle for some constant C; < co. We also assume that @
is bounded (or continuous) on (&, ||-|¢), i.e. [[Q¢ll: < Collpll, with
Cg < Q.

Definition 2.6 (Weaker version of strongly mixing). The Markov sys-
tem (M, K, u, &) is strongly mixing if Vn € Z* (for n = 0 it holds
trivially),

< Cllgllgr, Vo e

Q") (z) — / pdp
M

for some C' < oo and for some mixing rate {7, }nez+ (e.g. r, = p™ with

p € (0,1) or r, = - with p > 0).

Let {Z,}n>0 be the K-Markov chain, Z,, : X+ — M, Z,(z) = x,, for
v : M — R, we denote

Sn@ = W(ZO) + - QO(Zn—l) =@ot -+ Pno1-

Theorem 2.1 (Cai, Duarte, Klein 2022). If (M, K, u, &) is a strongly
mizing Markov system with mixing rate r,, = %,p >0, thenVaxge M

and Ve >0
1
P, {‘—Sngp —/ gpdu‘ > e} < gelem
n M

holds for alln € Z*, for all ¢ € & and for some c(e) = C(Cy, L,p)e2+%
1
where C(Cy, L, p) = (3CoL)" %) > 0 is a constant depending only on

o0



18 A. CAIL P. DUARTE, AND S. KLEIN

the mixing coefficient Cy, the mizing exponent p and the upper bound
L oof ¢l

Remark 2.3. For fixed zo, we need C° norm (we write ||-|| , but we ac-
tually mean ||-||,) in the left hand side of the strongly mixing condition.
If we replace P,, by P, since P, = [}, Psodp(ao), then L norm w.r.t
1 is enough. In any case, this will not affect any of our applications.

Proof. Without loss of generality, we assume Ep = 0, otherwise we
consider ¢ — Eg. Moreover, it is enough to consider P, {S,p > ne}.
Using Bernstein’s trick, for any ¢ > 0 we have

Puy{Snip > ne} = Py {59 > ¢} < 7R, (5%).

So our goal in the following is to estimate E,,(e""?) by relating it to
Q™ () for some suitable choice of ny < n.
Note that

tSW_Het% :_Hfj foer, >0,V =0,---,n—1.

Take ng < n such that n = ngm +r. In order to show the strategy, we
may assume r = 0 (which is actually without loss of generality because
the remainder is bounded by some constant). The key trick that we
use is the following. We rewrite fo--- f,—1 as

(fOfno" fm 1n0)<f1fn0+1 f(m lno—i-l) (fno 1f2n0 1 fmnofl)-

We denote Fj = f; frng+j*** fim—1)no+j- By using the generalized Holder
inequality, we have

no—1

Eq, Hfj - :80 FOFl no—l) < H[Ewo(Fl?O)] 0
k=0

Thus, it is enough to estimate each E, (F}°). In fact, we are going to
relate them to some powers of the Markov operator, which we formulate
as the following lemma.

Lemma 2.1. Let p € CO(M), |||l < L < oco. Let n > ng be two
integers and denote by m := [ ]. Then Vt > 0,Vxzy € M,

Emo (etSntp) < thnoL HQno (etnogo)”zl—l .

Proof. By assumption we have 0 < f; = f(z;) = e#@) < et Vj € N.
We rewrite fo- -+ fn—1 as FoFy -« Fy—1F,, where

}Fj = fjfno+j o 'f(m—l)n0+j; 0< ] <ng— 1
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and

FTLO = fmnofmno+1 e fmno—l—r—l-
Then F),, < €™ as r < ng. Therefore, we have

no—1

s 1
Eoo([] ) € €™ By (Fo -+ Frg—1) < ™% T [Eay (F°)] 70
j= k=0

We will show that E,, (F}"°) < el HQ”O(et”O%")HZ_I, Vk=0,--,ng—
1, which implies the result of this lemma.
Note that

F]:lo _ ]?0 etnoe(zr) gtno@(Tng+k) | . . om0 (T(m—1)ng+k)

fno —
no+k (m—D)no+k —

For convenience, we denote G(z) = F}"° and g(zy) = e0#@) etc. Then
by assumption 0 < g(x) < e’ for each k. It remains to estimate the
integral of a function of the type:

tnolL

G(l’) = g(xk)g(xno—i-k) T g(x(m—l)no-i-k)a 0< g <e

It is an integral w.r.t. a Markov measure, of a function G(z) depends
on a finite and sparse set of coordinates. We will show that

E.o(G) < ™" Qg

For simplicity, let us prove by showing an example when k& = 1,n¢ =
3bm—1=2andn =2x341 = 7. The general case, which is
identically the same, is left to the readers.

By direct computation, we have

/ 9(21)g(24)g(x7) APy ()
— / ce /g(xl)g(m)g(a??)d[(ze(i’??) te 'deo(x1>d5I0 (Z‘o)
:/. ../g(xl)g(a;4)[/ g(xﬁdKzﬁ(1’7)de5(1’6)de4($5)] o

Note that
/ 9() A (7 dK oy (26) Ky (5) = Qg(a) < [ Q%]

Similarly,

[ oy (w0 dE () (22) = Qglan) < @]
Thus
E.ulo(en)g(englaon)) < (|02, [ a(odRe o) < & |Q%]2
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This finishes the lemma. O

By the strongly mixing assumption of the theorem, we know that
(we may insert the mixing coefficient C’O into L)

1
"o < C — < L—;.
107l < Collel 5 < Ly

By the lemma above, we have Vn > ng, Vag € M,
Exo(etsncp) S 6ZtnoL HQno (etnoap) ||;’zfl )

However, ¢ € & does not necessarily imply €% € &, so if we want
to make use of the strongly mixing condition, we have to do one more
step.

Note that the following inequality holds for all x € R

@ x’ |z|
€ §1+$+3'€ .

Hence we can write

for some |¢(x)| < el*l. Therefore,
1
e = 1 4 tngp + 2t2n ©*Y(tngp)

where [1h(tngp)| < efmollelle < efmol < 2 if tngL < 1, namely ¢ <
Then we have

1
Q™ (e?) =1+ tngQ™ ¢ + §t2n(2)Q”° (<p2w(tn0cp))

2Ln :

which shows

1
[ (™ )| o <1+ tnol— +1*ngL* <1+ 2t°nglL?
0

if we have tnDL— < *nil? st > Hp Note that we can choose

—0 since ng can be chosen sufficiently

large such that no 2
1
By the inequality (1 +y)v < e,y > 0, we have

HQno tnocp)

By the lemma above, we have

2t2p2[2. 2 2
"0 < (14 2°n2L%) e g G o ot

E (etsnga) < thnoLthZnoLG < 462t2n0L2n
) > ~ .
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By Bernstein’s trick, we have
Pr{Sup > ne} < € By (€197) < ettt

It remains to estimate —te + 2t2nL? with some proper choice. For our

purpose, we can choose ng = (%)% and t = #éﬂ, such that —te +

2’ngL? < —C’(L,p)eQ’L% := —c(€e) where C(L,p) = (3L)_(2+%) > 0 is
a constant depending only on L, p and the strongly mixing coefficient
Cy as we already insert it into L.

This finishes the whole proof of the theorem. O

We now recall an abstract central limit theorem of Gordin and Livsic
(see [4] and [3]).

Theorem 2.2 (Gordin-Livsic). Let (M, K,v) be an ergodic Markov
system, let ¢ € L*(v) with [ pdv =0 and assume that

> 12, < oo
n=0

Denoting ¢ ==Y o, Q"p, we have that ¢ € L*(v) and p = ) — Q.
If o2() == |[9]17 — |Qu||5 > 0 then the following CLT holds:

Snp
a(p)vn

Recall that a Markov system (M, K, v) is ergodic if the measure v is
an extremal point in the convex space of K-stationary probability mea-
sures on M. This is equivalent to the ergodicity of the shift map on the
product space X relative to the Markov measure P = IP,. Evidently, if
K admits a unique stationary measure, then the corresponding Markov
system is ergodic.

As a consequence of the above result we obtain the following.

L N(0,1).

Proposition 2.2. Let (M, K,v, ) be a strongly mizing Markov system
(relative to the uniform norm) with mizing rate r, = nip with p > 1,
where € is a dense subset of Cy(M).

Assume that for any open set U C M with v(U) > 0 there exists
¢ € & such that 0 < ¢ < 1y and/ odv > 0. For any observable

M
© € &, if v is not v-a.e. constant then Theorem[2.3 is applicable and
the CLT holds.

Proof. The strong mixing condition and the density of € in Cy(M)
imply the uniqueness of the K-stationary measure, which in turn imply
the ergodicity of the Markov system. Indeed, if 7 is a K-stationary



22 A. CAIL P. DUARTE, AND S. KLEIN

measure, then for any ¢ € Cy(M) we have [ Q"pdv = [ dv for all
n € N. By strong mixing, for any ¢ € & we have that Q"¢ — [ pdv
uniformly. Integrating with respect to 7 we conclude that [¢dv =
[ pdv for all ¢ € &, so for all ¢ € Cy,(M), which shows that v = v.

Let ¢ € € be a non v-a.e. constant observable. We may of course
assume that [ odv =0, otherwise we consider ¢ — [ @dv.

Let ¢ := 3", Q"p. Since ¢ € Cy(M), the strong mixing assump-
tion on Q implies (via the Weierstrass M-test) that ¢ € C,(M) as well.
It remains to show that o?(¢) > 0 which ensures the applicability of
Theorem 2.2

Assume by contradiction that o?(¢) = |43 — [|Q¢||3 = 0. Then

0< [ (Q)@) ~ v(w)? dKa(y) dv(a)
=/k«@¢mwf+w@>—aw<> (@)} dE,(y) dv()
— [ {0 - (Qu)(a)*} dK. () dvlz)
:/ﬁ@w&@mwwiﬂ@wmfww

= ||9]|3 = [|Q¥[2 =0 (since v is K — stationary).

Therefore, 1(y) = Q¢(x) for v-a.e. x € M and K, -a.e. y € M. By
induction we obtain that for all n > 1,

Y(y) = (Q"Y)(z) for v-a.e. x € M and for K]-a.e. y € M,

which implies that for all n > 1 and for v-a.e. x € M, the function v
is K'-a.e. constant. Let us show that in fact v is v-a.e. constant.

If v is not v-a.e constant, then there exist two disjoint open subsets
Uy and Uy of M such that v(Uy),v(Us) > 0 and ¥|y, < ¢|y,. By the
assumption, there are two observables ¢1, 9o € € such that 0 < ¢; <

1y, and /gbi dv > 0 for ©+ = 1,2. Moreover, for all x € M and n > 1,

KU = (Q'10)(x) > (Q"6,) a/@@>o

where the above convergence as n — oo is uniform in x € M.

Thus for a large enough integer n and for all x € M, both sets U; and
Us, have positive K measure. However, |y, < v|y,, which contradicts
the fact that ¢ is K'-a.e. constant for v-a.e. ©x € M.

We conclude that v is v-a.e constant. Since v is K-stationary it
follows that ¢ = — Q¥ = 0 v-a.e, which is a contradiction. U



STATISTICAL PROPERTIES FOR CERTAIN DYNAMICAL SYSTEMS 23

We note that Theorem holds not only for the probability P =P,
but also for the probability P,, corresponding to the Markov chain
starting from v-a.e. point xy € M (see the comments after Definition
1.1 in [5]). Then Proposition 2.2/ and all of its consequences, also hold
w.r.t. these measures.

In the next subsections, we will introduce examples of dynamical
systems that fit this abstract framework.

2.3. Applications of the abstract LDT. We will mainly study two
certain skew-products.

Mixed random-quasiperiodic systems. Let T = R/Z be the
one dimensional torus. Assume o ¢ Q, let 7, : T — T be the torus
translation by « such that 7,(0) = 6 + @ mod 1. Therefore, (T, 7,,m)
is an ergodic MPDS.

Remark 2.4. The (Markov) Koopman operator of this system is not
strongly mixing, so the torus translation cannot be studied in this
abstract framework. This is simply because Q"¢(0) = ¢(0 + na) —»
[ ¢du as n — oo for any non-constant ¢ € C°(T).

Therefore, instead of torus translation, we are going to consider an
iterated functions system (IFS) of rotations.

Let pu € Prob(T), denote {a;,},>0 an i.i.d. sequence of translations
with distribution pu. We consider the iterates

9|—>9+Oéol—>(9+050+&1l—>"'

Then given ¢ : T — R an observable, we may consider

Qu(0) = / (0 + a)dp(a).

Obviously, the corresponding kernel K : T — Prob(T) is Ky = p * dy.

It turns out that the system (T, K,m) is strongly mixing with a
certain rate r, having either polynomial or exponential decay, provided
w satisfies some general arithmetic properties (to be defined later) and
¢ is Holder continuous. The proof will use some Fourier Analysis.

Note that the observable ¢ above only depends on one variable. In
fact, we will consider a more complex system which allows ¢ to depend
on infinite coordinates.

Regard ¥ := T as the space of symbols with the measure p. Let X :=
¥Z and consider the shift system (X, o, u%?) where o is the two sided
Bernoulli shift. Then the skew product dynamical system is defined by

f:XXT—XxT, fla,0) = (o, 0 + ).
The n-iterates are f™(«,0) = (6", 0 + ag+ -+ + ap_1).
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The triple (X x T, f, uZ x m) is called a mixed random-quasiperiodic
system. Under certain general assumptions on pu, it is ergodic and it
satisfies LDT and CLT for certain types of observables.

Certain types of linear cocycles. Examples are Random, Markov,
Fiber-bunched and Mixed cocycles.

We first recall the definition of linear cocycles. For more details, see
[Viana] and [DK-CBM].

Let (X, f, ) be an ergodic MPDS. A linear cocycle over (X, f, ) is
a skew-product map

F: X xR*— X xR? F(z,v) = (f(z), A(z)v),

where A : X — GL2(R) is a measurable function. We ususally call f
the base dynamics and A the fiber dynamics. We may also consider
the projective cocycle.

F:XxP— X xP, F(z,0) = (f(z), A(x)v).
The n-th iterates of the cocycle are F"(x,v) = (f"(z), A"(x)v) where
A(@) = A(f* @) - Alf(2))Alw)

are called transfer matrices in Mathematical Physics.
We will always assume a mild integrability condition:

/X log [ A(z) | du(x) < oo.

Denote by ¢n(x) := log||A™(z)||, then the sequence {p,}n>0 is f-
subadditive in the sense that

Pnim < @n o [ 4 om, Vm,n €N
By Kingman’s subadditive ergodic theorem,
1
~p, — LT, p-ae.
n

That is .
lim —log||A"(z)|| = LT (A), paexzeX
n—o00 N,

where LT (A) is called the maximal Lyapunov exponent of A. Moreover,
for p-a.e. x € X,

1 1 1
lim —log||A"(z)|| = lim /—log |A™|| dp = inf/—log |A™|| dp.
n—oo N n—o00 n n>1 n
By a similar argument, we have

lim llog HA"(I)’IH_1 =L (A), paexelX.

n—oo 1N,
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Note that Vg € GLy(R), Hg‘lel < |lgll, so L=(A) < LT (A).
We recall the Oseledets multiplicative ergodic theorem.

Theorem 2.3. Let Fy : X x R? — X x R? be a p-integrable cocycle
given by A : X — GLo(R) over an ergodic MPDS (X, f, ), then

(1) If LY (A) = L= (A), then Vv € R? non-zero,
1
lim Elog |A™(z)v|| = LY (A), p-ae.z€X.
n—o0

(2) If LT (A) > L™ (A), then there is a measurable map
z— V, C R?
where V,, is a one dimensional subspace of R?, such that
A(@)Vy = Vi)

i.e. Vi is an F- invariant section. Moreover, if v ¢ V.., then
.1 n -
i~ log [ 4" (@)u] = L™ (4).
Otherwise, if v € V., then
1
lim — log [|[A™(z)v|| = LT(A).
n—oo 1

Moreover, if f is invertible then there exists a measurable splitting
of the fiber: for p-almost every x € X, R? = EX ® E, such that

(1) A(@)E; = Ej,).

(2) lim, o0 + log ||A™(z)v]| = LE(A), v € EE, v # 0.
(8) lim,, %log ’sin A(E;fn(x), ;”(x))‘ =0

Examples of linear cocycles are quasi-periodic cocycles over a torus
translation 7, (which does not fit our framework) and random cocycles
over a Bernoulli shift o.

3. LARGE DEVIATIONS FOR RANDOM LINEAR COCYCLES

We begin with the definition of a random linear cocycle.

Setup. Let (X, 1) be a probability space (X is always assumed to be
a compact metric space throughout this section). Denote X := X% and
let o be the two sided (Bernoulli) shift. pZ is the product measure on
the infinite product space X. The triple (X, o, u%) is called a Bernoulli
shift. This is the base dynamics.

Let A : X — GL2(R) be a continuous random cocycle. More-
over, assume that A is locally constant, namely, A(w) = A(wp) where
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w = {wn fnez. Given the Bernoulli shift, A determines a random linear
cocycle

F=F4: X xR = X xR? F(w,v) = (0w, A(wy)v).
The n-th iterates of the cocycle are
F'w,v) = (6"w, A™(w)v)

where A"(w) = A(wp_1) - A(w1)A(wp). As before, we may also con-

A

sider the projective cocycle F' that is similarly defined.
We say that F satisfies a fiber LDT (or A satisfies an LDT) if Vv #
0,v € RZVe>0

1
u” {w € X: ‘—log |A™ (w)v|| — L+(A)‘ > e} < e—clom
n

for all n > n(e, A) and for some c(e) > 0.
We will prove this LDT under certain “generic assumptions” on A
and p. Under the same assumptions, we will also get a CLT:

log [[A"(w)v|| = nL™(A)

av/n
Remark 3.1. Note that since A : ¥ — GLy(R) is continuous, then
v = A.u € Prob.(GLy(R)). Therefore, we can start with a compactly
supported probability measure v in Prob.(GLy(R)) and consider the
multiplicative process associated to an i.i.d. sequence of random ma-

trices {gn}tnez, gn € GLo(R) with distribution v. These two settings
are essentially equivalent.

—Ly N(0,1).

Generic assumptions. Let (X, 1) be a probability space, A € 3 —
GL2(R).
Definition 3.1. A line [ C R? is A-invariant if A(x)l = [ for u-a.e.
x € X.

Let H 4 be the group generated by the support of A,u. Note that if
[ is A-invariant, then [ is H s-invariant.

Definition 3.2. A cocycle A is called irreducible if there is no A-
invariant line.

Definition 3.3. A cocycle A is called strongly irreducible if there is
no finite union of lines which is A-invariant. Namely, Vn € Z™, there
exist no lines {/;}1<j<, such that A(z) Uj_, [; = Uj_, j for a.e. x € 5.

Definition 3.4. A (or A,p) is called non-compact if there exists a
sequence of matrices {hy, },>1 C H4 such that [|h,] - [|h, || — oc.
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We introduce a profound theorem of Furstenberg.

Theorem 3.1 (Furstenberg’s Theorem). If A is non-compact and strongly
irreducible, then LT(A) > L~ (A).

Example 1. Triangular matrices A : ¥ — GLy(R):

= (15 i)

is reducible because the line [ of the direction (1,0) is A-invariant.
Example 2. Random Schrédinger cocycles. Let 3 C R be compact
and p € Prob(X). Then S : ¥ — GLy(R) is defined by

S(a) = (j‘ _01) € SLy(R).

Assume that #supp(p) > 2 (p is not a single Dirac), then S is non-
compact and strongly irreducible. We leave the proof to the readers.
Hint: play with S(a)S(b)~! and S(a)~1S(b), show that (1,0) U (0, 1) is
the only potential candidate for S-invariance and prove it is actually
not S-invariant. Thus strongly irreducible condition is fulfilled. As for
non-compactness, take n-th power of either S(a)S(b)~! or S(a)~1S(b).

Let | C R? be an A-invariant line, namely A(z)l = [ for p-a.e. z € X,
then we can restrict A to l. We denote it by AJ;. Fix a unit vector v € [,
then A(w)v = A(w)v for some A : X — R which is in fact also locally
constant. Let A™"(w)v = A(c" 'w)--- A(ow)A(w)v, then by Birkhoff
ergodic theorem

Llog 4" (w Zlogw ) = [ tog Al i) = L(AD.

Definition 3.5. A is called quasi-irreducible if either there is no A-
invariant line or L(A[;) = LT(A).
We will prove the following theorem.

Theorem 3.2 (Le-Page, Duarte-Klein). If A is quasi-irreducible and
LT(A) > L~ (A), then A satisfies LDT: Ve >0

1
u” {w € X :|—log|A™(w)v| — L+(A)’ > e} < e—can
n

holds Vv # 0,v € R?, ¥n > n(e, A) and for some c(e) > 0.

General strategy for the proof. Consider the projective cocycle

Fp: X XP— X XP, Fylw,d) = (0w, A(w)d).
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The corresponding Markov chain on M := X x P is

(WQ,@) — ((A)l, A(wo)’[]) — (u)g, A(wl)fl(wg)@) — e
where we denote (wy, A(wp_1) - -+ A(we)d) =: Zp.
The associated SDS is

K : X x P — Prob(Z x P), Ky = p X 0 A(wo)o-
This kernel K defines a Markov operator
Q:C°TZ xP) = C'(Z xP),

Qeton, ) = [ pleor, Alw)o)den).

)
We will consider a special observable £ = &4 : ¥ x P — R such that
§alwo, 0) = log || Awo)vl|

where v is a unit representative of 0. B
Recall that m € Prob(X x P) is K-stationary if and only if Q*m = m
where Q* is the dual of (). Then by Furstenberg’s Formula, we have

LT(A) = max wg, 0)dm(wg, 0
(4) meProb g (SxP) { SxP Ealwo, 0)dm(wo, )}

Let © = {z, }n>0 € MY, then if we start with an initial & which is a
unit vector. we have

Sn€a(w) = Ealzo) + Ealz1) + -+ + Eal(zn) = log || A" (w)v]|.
Thus . .
ﬁSnSA(x) = log A" (w)v| - (3.1)

Note that if A is quasi-irreducible, then the lLh.s. will converge to
[ €adm = LT (A) by Birkhoff, so intuitively the LDT should follow.

3.1. Stationary measures. Equation shows that in order to
prove fiber-LDT for A, it would be enough to prove the corresponding
Markov chain with observable &4. For this purpose, it would be enough
to show (because of the abstract LDT) that the Markov operator @
is strongly mixing on some appropriate space (&, ||-||) which contains
the special observable & 4.

A priori, this space will be H*(X x P) of a-Hélder continuous func-
tions in P with some appropriate norm with some o > 0. On this
space, () will be shown to be quasi-compact and simple in which case
r, = o™ with o € (0,1). In fact, it will be convenient to work with a
simpler kernel and the associated Markov operator.
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Let @ : C(P) — C(P) such that
Qu(0) = [ wlAl)ilduten)

Then @ is the Markov operator corresponding to the kernel K : P —
Prob(P) :

Ky = [ 0 4(p)odp(wo).
Consider the projection I : C'(X x P) — C(PP) defined by

(@) = [ lon, D)du(en).
Lemma 3.1. The following dz'agmm 15 commutative.
C'XE x P) SN C'XE x P)
Hl ln
P L CP)
Namely, 1o @Q = Q oIl.

Proof. A simple calculation. O
Lemma 3.2. Vo € C%(X x P), Vn > 1, we have

Q"p(wo, 0) = Q" (TTp) (A(wo)).

This shows that in order to prove that Q is strongly mixing on &, it
is enough to show that @ is strongly mixing on II(E).

Proof.
@ ol 8) = [ ol (@) 0)dn(n) -+ difen)

= /n o (wn, A(wn_l) e fl(wo)f})d,u(wn) e dp(wr).

On the other hand, for any ¢ € C'(P) and p € P, we have

Q" '(p) = (A(wno1) - Alw)p)dp(wn—1) -+ dp(wr).  (3.2)

yn—1

If we take p = fl(wo)@ and 1 = Iy, then |) equals to

/ 1 / s A(wn_1) - Awo)d)dp(wn—1) - - - dp(wy).
E’VL
This finished the proof. O
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Recall that given a Markov kernel K : M — Prob(M), a measure
n € Prob(M) is called K-stationary if @*n = n where Q* is the dual
of the Markov operator () associated with K. In this case, we will
denote 1 € Probg(M). In fact, there are several equivalent definitions
as follows:

(1) @m=n
(2) Vo e CO(M), [,, sodn—stﬁdn
(3) Yo € COM), [y, [ ey y)dn(x) = [, pdn.

(4) K*n—nwhereK*n_fK dn )
Proposition 3.3. Given n € Prob(P), the following are equivalent
(TFAE):
(1) n is K-stationary.
(2) 1 xn is K-stationary.
(3) pN xn is FT-invariant where F+ : X+ xP — X+ xP. Namely,
(X+ x P, F+, uN xn) is an MPDS.

Proof. We will first prove (1) < (2). It is enough to show that K *n =
n< Kx(uxn)=pxn. In fact, we will show that

K (< n) = px (K *mn). (3.3)
This will conclude the proof because if K xn =7, then Kx*(uxn) =
pwxn. If Kx(uxn)=puxmn, then p x (K xn) = p x n which gives
Kxn=n.
Note that (3.3)) is equivalent to saying that: V¢ € C°(X x P),

/sod[f_( * (nxn)] = /sodud(K *17).
We first look at the left hand side. By the definition of convolution,
K % (uxn) = / K (wo,0)dpt(wo)dn(0) = / 11X 6 10 @iu(wo ) dn (D).
Thus we have
[ el s ucn) = [ plen, Alun))dp(en)dution) (o)

Now let us focus on the r.h.s.

Km=/mm®=//%mmmmmw.

Thus we have

/WMK*n /// ) dja(eor)dp (i) ().

This proves (1) < (
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In the following, we are going to prove (1) < (3). Recall that N x n
is F'-invariant if and only if Vi € C%(X T x P),

/(pduan:/<poF+d,uan.

More precisely,

A

/s@(w,@)duN(wo,wu-~-)d77(17) = /s@(aw,A(Wo)ﬁ)duN(wl,wz,---)dn(@)-

If we denote ¢ := [ ¢(w, 0)dp"(w) € C°(P) which is arbitrary since ¢
is arbitrary, then the Lh.s. becomes [ ¢dn and the r.h.s. becomes

/ (0w, A(wo))dia® (i, wa, - )dn(6) = / / (Alwo)8)dplwo)dn ()

~ [ @u(@yinto).
Thus it is clear that (1) < (3). This finishes the proof. O

Before we proceed, we recall some convex analysis concepts.

Let X be a topological vector space that is Hausdorff and locally
convex. Given D C X, p € D is an extreme point of D if it is not
between any two different points in D. That is, there are no x,y € D
with & # y such that for some ¢t € (0, 1),

p=te+(1—-1t)y.

Theorem 3.3 (Krein-Milman). If D C X is compacy, convex and non-
empty, then D has at least one extreme point, i.e. extreme(D) # (.
Moreover, the closed convezr hull of extreme(D) is D.

Here the closed convex hull C'o(S) is the smallest closed convex set
containing S.

Example 1. Let M be a compact metric space. D := Prob(M)
with the weak® topology is compact convex and non-empty. So Krein-
Milman applies. In this case, X is the space of signed measures which
is metrizable with the weak* topology.

Example 2. Under the same settings as in Ex 1, let D := Probg (M)
which is closed. Thus D is compact, convex and non-empty. So Krein-
Milman also applies.

Stationary measures, continuation.
To be more precise, let us rewrite the three levels of objects.

(1) DDS, projective linear cocycle:

~

FF:XtxP— Xt xP, F™(w,d) = (0w, A(wy)0).
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(2) SDS on ¥ x P:
Kz = 11 % 0 A(wo)o”
with the corresponding Markov operator Q:

Q:CUT xP) = C' (X xP),

@mwwz/pww%mmwwm

s
K-Markov chain {Z,},>0 where Z, : X* x P — ¥ x P such
that

Zo(w, ) = (wo, 1), Zn(w, D) = (wn, A"(w)D)

with initial distribution p x d; (non-stationary case) or p X n
(stationary case).

(3) SDS on P:
K /5 d,u W(]

with the corresponding Markov operator Q:

Qi CO(B)  C°B). Quld) = [ p(Al)i)duli)
P
We will mainly consider the special observable on > x P:

§:0xP =R, §(wo,0) =log || Awo)vl

where v € 0 with |jv]| = 1.

The corresponding observable on P is ¢ = II¢ : P — R where
p(0) =[5, p(wo, D)dp(wo) for any ¢ € CO(X x P).

The corresponding observable on Xt x P is

P:XTXxP R, ®w,d)=Ewo,d).

Remark 3.2. We emphasize that all the places where ¢, 1) € C° above
can be replaced by ¢, € L* simply because we can define the Markov
operator not only on the continuous function space, but also on the
space of essentially bounded functions.

In the following, we will prove that 7 is an extremal point of Prob (IP)
if and only if N x 7 is F'*-invariant.

Definition 3.6. An observable ¢ € L*>(P) is called n-stationary if
Qe(v) = p(v) for n-a.e. v € P. A Borel set E C P is called n-stationary
if 15 is n-stationary. Or equivalently, 7-a.e. © € E < A(wy)d € E for
[-a.e. wy € 2.
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The equivalence statement is due to the condition:

QUp(5) = / 15 (A(wo)d)dpu(wo) = 15(3), m-ae.d € P.

Proposition 3.4. Let n € Probg(P), the following are equivalent:

(1) n is an extremal point of Proby (PP).

(2) If F C P is n-stationary, then n(F) =0 or 1.

(3) If o € L=(P) is n-stationary, then ¢ = const, n-a.e.
(4) (Xt x P, F+ uN xn) is an ergodic MPDS.

Proof. We prove by this order: (1) = (2) = (3) = (4) = (1).

(1) = (2). Assume by contradiction the existence of F' C P which is
n-stationary with ¢ = n(F) € (0,1). The same holds for F. Namely,
F* is also n-stationary and n(F°) =1—t € (0,1).

Let

n(ENF)

nr € Prob(P), np(F)= o (F)

which is the conditional probability. Then by the Law of total proba-
bility,

n=tnp + (1 —t)npe.

Moreover, since np(F) =1 and npc(F) = 0, we have ng # npe.

If we can show that np € Probg(P)( then so does ng.), we will
get a contradiction because 7 is assumed to be an extremal point of
Probg (PP).
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Let ¢ € L>*(P), direct computation shows

[ @eine = — [ Qean
5 . | eAtopduteayin)
7 | [t @)den)anti
7 | [ et (Aen)dutun)into)
7 | [ el ites)duten)dn)
1 [ [l @auanant)

/Q @lr)(0)dn(0)

- W / (o) (@)dn(d)

- ﬁ /F o (5)dn(0)

= /@dﬁF-
P

This proves that ng is K-stationary, so is ng..This contradicts that n
is extremal, so (2) holds.

(2) = (3). Let ¢ € L*(P) be n-stationary. We will use the following
useful fact from measure theory.

Exercise. ¢ is constant 7-a.e. iff the sub-level sets {¢ > ¢} = {v:
©(0) < ¢} have n measure either 1 or 0,V ¢ € R.

Fix c € R, let E = {0 : ¢(0) < ¢}. We will show that 1z is 7-
stationary. Namely, F is n-stationary and by (2) we obtain that n(E)
is either 0 or 1. Since c is arbitrary, by the Exercise above, we get ¢ is
constant n-a.e.

Let 8 := {p € L*®(P) : ¢ is n-stationary}. We will show that 1z € 8.
We list two properties of § below:

(1) 8 is a linear space,
(2) 8 is a lattice.
Item (1) is obvious. For Item (2), being a lattice means
e pc8=|pl €S
o If p,7 € 8, then min{yp, v}, max{yp, 1} € 8.
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We prove the first item. Since 1 € Probg (PP), we have

AQM—MMZAQMM—AMMZO

v €8 = Qp = p, n-a.e. This implies

lp(0)] = [Qp(D)]

35

That is, |p| < @ |g|, n-a.e. Therefore, || = Q ||, n-a.e. which shows

ol € 8.
The second item follows simply from the first item and the linearity
because
: + -
mm{%w} = 4 - |()0 |7
2 2
+ —
max {0} = 7 v, le—vl

2 2

Now, let ¢,(0) = min{1l,n-{c— ¢(0),0}}. Clearly, ¢, — 1g as
n — oo. Moreover, by the properties of § and the definition of ¢,,, we
have ¢, € 8. Thus Q¢,, = p,, n-a.e. Then we have Qy, = ¢, = 1g
and also Q¢, — Q1g, n-a.e. Finally, by the uniqueness of limit, we

have Q1 = 1g, n-a.e. which proves 1p € 8. This gives (3).

(3) = (4). To prove that uN x 5 is Ft-ergodic, it is equivalent to
showing that if ¢ € L>®(X+ x P) satisfies o F'T = ¢, uN x p-a.e., then

) = const, ¥ x n-a.e.

Let ¢ : P = R, p(0) = [y ¥(w,0)dp" (w). We will first show that
@ = const, n-a.e. For this, it is enough to show that ¢ is n-stationary
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because of (3). By direct computation,
Qi) = [ plAn))dn(en)
= [ ¥ Al e
= [ vlow. Alsn)yin
- [ voFtw i)
= [t 0y
= ¢(0)

for n-a.e. v € P.
It is left to show that ¢ does not depend on w = (wp, -+ ,wWg_1," ).

Fix k£ > 1, it is enough to show ¥ does not depend on (wp, - ,wWk_1)-
By assumption, we have

Yp=1poFt=...=¢o(F N xn-ae.
Namely,

Therefore, we have

¢(wv @)dMN(wh Wk+1, " * ) - (Ukw7 Ak(w>ﬁ)duN(wk’ Wk+1, " * )
X+ X+

for n-a.e. v € P.

So 1 is constant in (wp,- - ,wk_1), V& > 1. Thus ¢ is constant
in w (one can also consider in terms of conditional expectation w.r.t.
sub-algebras generated by cylinders). This proves (4).

(4) = (1). Assume by contradiction that 7 is not extremal, then
t € (0,1),m # nm2 € Probg(P) such that n = tn; + (1 — t)ne. In
particular,

Pt =t x4 (1= 6)p" X 1.
Since uN x n;,i = 1,2 are F *.invariant, then Y x 7 is not ergodic
because ergodic measures are extremal points of the space of invariant
measures. This contradicts (4), thus (1) holds.

The proof is thus finished.

O
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As a corollary, we have

Corollary 3.5. If n € Probg(PP) is extremal, then

Tog 4ol | 1og | AGwo)ol duan)in(o), asn— oc

for N x n-a.e. (w,0), where v € v with ||v]| = 1.

3.2. Conditional expectation. Let (2, F,[P) be a probability space.
Let £ € L'(Q,F,P) and denote E¢ = [, &dP. Take F, C F a sub-o-
algebra.

E(&]|Fo) is the conditional expectation of & w.r.t. Fy. Intuitively, it
is the best prediction of £ given the information Fy. Formally, we have

Definition 3.7. E(£|F,) is the “unique” random variable £ : Q — R
such that

(1) £ is Fo-measurable.
(2) VE € &, [, &dP = [, €P.

The existence and uniqueness of E(£|F,) are given by Lebesgue-
Radon-Nikodym. More precisely, consider the map

3‘09En—>/§dIP’eR,
E

which is a signed measure. We denote it by v. Morever, it is clear that
v L Plg, since if P(E) = 0, E € F, then v(E) = [,&dP = 0. Then

by Lebesgue-Radon-Nikodym, 3§ € LY(Q,Fy,P) s.t. dlg"; = £, which
Fo

gives (2).
Remark 3.3. If Y7, --- , Y} are random variables on (), then

E(EYr, -+ Ye) := E(¢lo(Ya, -, i)

which is the conditional expectation of £ w.r.t. the o-algebra generated
by the random variables Y7, --- | Y.

We may think of E(¢]|Fy) as a “pixelation” of & where the resolution
of the pixels is determined by how fine Jj is.

Example 1. ([0,1],B[0,1], Leb). For n > 0, let

D,, ;=0 {dyadic integrals of generation n}

g Jg+1. .
0{[271’ on )7] ) ) }

If £:]0,1] — R is Borel measurable, E(£|D,,) is a function constant
on the dyadic intervals of length -, where the value of the constant on

271,7



38 A. CAIL P. DUARTE, AND S. KLEIN

such an interval J is ﬁ fJﬁ. It is clear that D,, C D, 41, so {Dy,}n>0
is a “filtration” of B[0, 1] and o(U,>0D,) = B[0, 1].

Example 2. Let (X, B, 1) be a metric space of symbols. Denote
X+ = 3N F = g{cylinders} and let ™ be the corresponding measure
on X. Forn >0, let

F, :=o {cylinders in at most n variables, C[Ag, -+, An—1], A; C X}

=0 {random variables depending only on : wg, -+ ,w,_1,w; € X}

Given ¢ : X+ — R an L!'-function.

E(fﬂ?n)==t[;£(W)duN(wn,~~)-

It is clear that ¥, C F,41 and o(U,>0F,) = F. Thus {F,}.>0 is a
filtration of F.

In the following, we list some basic properties of the conditional
expectation.

Proposition 3.6. Let Fy C F be a sub-c-algebra. The map L' (2, F,P) >
& E(EFy) € LD, Fo,P) has the following properties:
(]) linear: ]E(afl + b§2|g:0) = aE(fﬂffO) + b]E(fQ|3ro), ‘v’a, beR.
(2) positive: £ > 0-a.s. = E(&|Fy) > 0-a.s.
(8) monotone: if & < &3-a.s. then E(&|Fo) < E(&|Fo)-a.s.
(4) Jensen’s inequality. Assume that ¢ : R — R is conver and
o(6) € LN, T, B). then
P(E(£|F0)) < E(p(£)[F0)-
(5) If &, 7 & with € > 0 and E€ < oo, then E(&,|F0) /7 E(&|F).
(6) If F1 C Fy, then
E(E(ﬂ%)’%) = E(f‘ffl)

and

E(E(&|F1)|F2) = E(£][F1).

Definition 3.8. We say that a random variable ¢ is independent of Fy
if 0(£) and Fy are independent. That is, if £ € o(§) and F' € Fy, then
P(ENF)=P(E)P(F).
Proposition 3.7. We have the following two properties:

(1) If € is Fo-measurable, then E(E|Fy) = £. Moreover, if f € L' is

any other random variable, then
E(§f[Fo) = EE(f]Fo).
(2) If € is independent of Fy, then E(£|Fo) = E(€).
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Proof. We only prove (2) as (1) can be derived in the same way.
Let ¢ = E(§). It is Fp-measurable because it is a constant. It is
enough to show that V E € F,

/E £dP = /E EdP = E(6)P(E).

Step 1. Let £ = Zle ¢;lg, be independent of Fy, VE € Fy

k
[EgdP ;cl/E]lEidIP’
k
=> ¢P(ENE))
=1
k
=> oP(E)P(E
=1

—E()P(E).

Step 2. Let £ > 0,¢ € L' be independent of F, then by the Simple
Function Approximation Theorem, 3{,},>0 a sequence of pointwise
increasing simple functions which are also independent of F;, such that
& € Moreover, o(&,) C 0(€). Therefore, by Step 1 we have that
VE €3,

Let n — oo, by item (5) of Proposition [3.6, the Lh.s. converges to
E(&|Fo). Moreover, by the Monotone Convergence Theorem, the r.h.s.
converges to E(§)P(E). Thus by the uniqueness of limit, we obtain

E(&]Fo) = E(§P(E).
Step 3. Let £ € L! be independent of F, we may rewrite £ = £+ —£-
with € > 0 being also independent of Fy. Moreover, o(¢%) C o(&).
By item (1) of Proposition [3.6, we have

E(¢|Fo) = E(£7|Fo) — E(E™[Fo).
This implies V E € F,

/E E(¢]Fo)dP = /E E(¢*|Fo) — E(¢|50)dP

/ E(¢*|F)dP — / E(¢~|Fo)dP
~ B(¢")B(E) — E(6 )P

= E(P(E).
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This finishes the proof. U

Let 3 be a Hilbert space with inner product (-,-) and let Hoy C H
be a closed subspace. Take any v € J, we may define the orthogonal
projection of v to the subspace Hy by u =: Projs v satisfying u € Hj
and v —u L H,.

In particular, L?(Q, F, P) is a Hilbert space with inner product (£, f) =
E((f). If Fy C F is a sub-o-algebra, then Hy = L*(Q, Fo, P).

The following proposition says that we may regard the conditional
expectation as an orthogonal projection.

Proposition 3.8. If ¢ € L*(Q,F,P), then E(¢|F,) is the orthogonal
projection of € to the subspace L*(Q, Fy, P).

Proof. We first verify that E(¢|Fo) € L*(F).

By Jensen’s equality, we have
[E(€|Fo)* < [E(I&] [Fo)l* < E(l¢]* [Fo)-
This implies

/ E(¢]50) 2 dP < / E(|¢]? [0)dP = / PP =E €] < oo.
Q Q Q

Thus we have E(¢|Fo) € L*(Fy).

Then we are going to verify that E —E(¢|F,) L f, V f € L*(F,) which
is equivalent to (£, f) = (E(§|F0), f). Namely, E(§f) = E(E(£|F0)f).
Since f € L*(F,), we have

E(E(&|F0)f) = E(E(£f]F0)) = E( ).
This finishes the proof. U

Let (92, F,P) be a probability space. A filtration is a sequence of
o-algebras {F,, } >0 with F,, C F,41.

Definition 3.9 (Martingale). A martingale is a sequence {(&,, F) fn>o0
such that

(1) Ef,] < o00,Vn >0,

(2) {F.}n>o0 is a filtration,

(3) &, is F,-measurable,

(4) E(§n11Tn) = &n.

Example 1. (Standard random walk). X,, : Q@ — R,n > 1 are i.i.d.
random variables with EX; = 0 and E|X;| < c0. S, = X5+ -+ +
X, and &, = o{Xy,---,X,}. Clearly, S, is F,-measurable. Then
{(Sn, Fn) }n>1 is a martingale. Note that S,,11 = S, + X,41. Thus

E(S,11]Fn) = E(S,|Fn) + E(Xpi1]|Fn) = Sn +0=5,.
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Example 2. (Doob’s martingale). Let X,, : @ — R,n > 1 be
random variables. &, = o{Xy, -+, X,}. Assume £ : @ — R is a
random variable with E |£] < co. Let &, = E({|F,), then {(&,, Fn) b1
is a martingale. Note that

E(€ns1|Fn) = E(E(§]Fn11)[Fn) = E(§]Fn) = &

Theorem 3.4 (Martingale convergence theorem). Let (2, F,P) be a
probability space. Let {(&,, Fn)n>o be a martingale. Then there exists
£ € L' (w, F,P) such that

(1) &, — €so-a.5. as n — o0,

(2) E(o|Fn) = &n-a.s. Y >0,

(3) €xo is Foo measurable where Foo = 0{Up>0F .}

3.3. Furstenberg formula. We begin with an abstract result.

Theorem 3.5 (Furstenberg-Kifer). Let (2, F,P) be a probability space.
Let M be a compact metric space and let K : M — Prob(M) be an
SDS. Giwen a K-Markov chain {Z, : Q@ — M },>o, for any f € C(M),
with probability one the following hold

(1) limsup,,_,., = Z;:g f(Z;) < sup{ [\, fdn:n € Probg (M)} .
(2) If Probg (M) 3 n — [,, fdn is constant equal to 3, then

1 n—1
lim =% f(Z;) =8
j=0

In fact, by compactness of Probg (M) and continuity of f, we may
replace “sup” in item (1) by “max”.

Proof. For (1), we first consider the first case when f = Qg — g for
some g € C'(M). In this case, we prove the following lemma.

Lemma 3.9. If f =Qg — g, g € C(M), then
n—1
.1
Jim —~ ZO f(Z;(w)) =0, P-as.
]:

Proof. Consider the random variables W,, : Q@ — M ,n > 1,

"~ Qq(Z;1) — g9(Z;
Wn:_; 9( j) 9( )

Then W,, depends on Zy, -+ , Z,. Let F,, = 0{Zy,--- , Z,}. We claim
that {(W,,F,)}n>1 is a Martingale. By definition,

Wit = Wot —2(Qa(Z0) = 9(Zus).
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This implies
1 1
E(W,1|F,) =W, + —E Z)|Tn) — ——=E(9(Zns1)|Tn)-
(Woen[F2) = W, + ——E(Qo(Z,)1%,) ~ ——E(g(Zus1)I5)
It is clear that E(Qg(Z,)|F.) = Qg(Z,). On the other hand, by Markov

property we have
E(9(Zn11)|Fn) = E(9(Zns1)|Z0, -+, Zn) = B(9(Zns1)] Zn).
Moreover, by the definition of the K-Markov chain,
P(Z,1 € E|Z, =) = K,(F).
Thus
Blg(Zusi)|Z =) = | gdK. = QolZ)
M
Therefore,
E(Wpi1|Fn) = W,,.
There other properties of being a martingale are straightforward.Thus
we prove that {(W,,,F,)}n>1 is a martingale. By Martingale conver-
gence theorem, W, — W, < oo almost surely.

Recall that Kronecker’s lemma says if Y o | a,, < 0o, then + > jaj =
0 as n — oo. Then by this lemma, we have that when n — oo,

LYy HEZIE) LS 0(z,m0) ~ 9(2,)] -0,

Jj=1

namely,
—Z Zi2)+ 9(Z;) = 9l Z;)) = .

Note that for g thls is a telescoping sum. Since g is bounded, when
divided by n the second and third terms in the sum disappear as n —

0o, which gives
L Z iz

Note that all the statements are in almost sure sense as W, is. This
proves the lemma. O

As M is compact, the space of continuous functions on M denoted
by C(M) is separable. Then Jgy, -+, g, - -- which are dense in C'(M).
Apply the previous lemma to fi := Qgr — gk, so I C Q,P(Q2y) =1
s.t. Vw € Qk,

S IQZ () — aZ )] 0, as 0
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Let . = Ng>1€%, then P(€,) = 1. Fix an arbitrary w € Q,, then

_ZQQk ) —9x(Zj(w))] = 0, as n— oco.

For any n > 1, consider the measure on M

n—1

Z 07,(w) € Prob(M).
Then the previous statement is equivalent to

/ Qg — gkldn, — 0, as n — oc.
M

Since {gg }r>1 is dense in C(M), Vg € C(M),

/ Qg — gldn, — 0, as n — oo.
M

Let 7. be any weak* limit of {7, },>1. Then since g, Qg € C(M),

/ (Qg — g)dn. = 0.
M
Namely,

/dim:/ gn., YgeC(M),
M M

which shows that 7, € Probg(M). Note that f is bounded, by the
definition and existence of limsup, there exists a sequence {ny }x>1 such
that

n—1 ne—1

limsup%Zf(Zj( = lim — Z f(z = lim / fdny, < oco.

k—00 N = k—o0

Besides, since M is compact, then Prob(M) is weak* compact. So we
can choose a subsequence {ny,} such that

/ fdi, — / Fro. as i oo,
M ‘ M

where 7y € Prob K(M ) by the previous argument. This proves

lim sup — Zf ) < sup {/ fdn:n € ProbK(M)}

n—oo

with probability one. Moreover, we may replace “sup” by “max” be-
cause of the compactness of Probg (M) and the continuity of f.
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For (2), by assumption we have, with probability one,

/—fdnz—/ fdn = —pB,¥n € Probg(M).
M M

Apply (1) to —f, we have

n—1
fimsup - Y- £(2,) < 6.
7=0

n—oo N <

Equivalently,
n—1
NP
—liminf —%  f(Z;) < -5,
=0
and thus
n—1
1
N N
lim inf E;f(zj) > 3.
j:
Combining (1), we have with probability one,

n—1
Tm (%)= 5.
7=0

0

We will apply this theorem to the DDS: projective linear cocycle as
described before. Recall that we have proved n € Probg (P) < puxn €
Probg (3 x P). In fact, we shall see that if m € Probz (X x P), then
dn € Probg(P) s.t. m = pu x n. Let us acknowledge this for now and
later we will prove it as a lemma.

Define a : Probg (P) — R as
a(n) = [ &wo, 0)dp(wo)dn(d),
ExP
where &(wg, 0) = log || A(wp)v| with v € ¥ a unit representative. It is
clear that « is a continuous linear functional. We define
p:=max{a(n) : n € Probg(P)}.

The maximum is attained again because Probg (IP) is compact.

Theorem 3.6 (Furstenberg-Kifer). Vv € R? non-zero,
(1) We have
1
limsup — log || A" (w)v|| < 5

n—oo 1

for pN-a.e. w e X+,
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(2) If a(n) = B, Vn € Probg(P), then

1
lim ~ log | A"(w)v] = 3

n—o0 M

for pN-a.e. w e X+.

Proof. Note that
max {/gdm :m € Probg (X x IP’)} (3.4)

— max { / ¢dpdn :n € ProbK(IP’)} =5 (3.5)

Consider the K-Markov chain, Z,, : XTxP — ¥ x P with Z,(w,?) =
(wn, A" (w)v). Recall that we have by direct computation

n—1

> (2w 8) = - log 4" @)l

J=0

for uN x §z-a.e. (w,d). Thus by Theorem it remains to prove the
following:

Lemma 3.10. If m € Probgz (X x P) then 3n € Probg(P) such that
m=pxn.

Proof. To define a measure 7, it is enough to define its corresponding
integral.
For any ¢ € C(P), let

I(y) ::/ wdm
UxP
where mp = . Here 7 : C(X x P) — C(P) is defined by
(D) = /Ew(wo,ﬁ)du(w()).

For I to make sense, we should have that if mp; = mpsy, then
fEX[pJ p1dm = fExIP wodm. Note that

Qeton, ) = [ elen, Alen)du(on) = molAlun)d).
Then if mp; = Tp,, then Q1 = Qy,, which shows

/ Qgpldm = Qg@dm.
YxP

Y xP
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Since m is K-stationary, we have

/ prdm = podm.
Y xP YxP

Therefore, I is well defined positive linear functional and /(1) = 1. By
Riesz-Markov-Kakutani representation theorem, there exists a unique
Radon measure 7 € Prob(P) such that

100) = [ van

Thus we have n € Prob(P) such that

/mpdn = /(pdm, Vel xP).

Namely,
/ cpdudn:/ edm, Vo € C(X x P).
YxP YxP
This shows m = p x 7. U
Thus the whole proof is finished. 0

Next we are going to prove the Furstenberg’s formula which is par-
ticularly useful in proving modulus of continuity of the first Lyapunov
exponent.

Theorem 3.7 (Furstenberg’s formula). Given a probability space (X, 1)
and given a random linear cocycle A, its maximal Lyapunov exponent
Lt (A) satisfies the following equation:

LT (A) = max {/ log || A(wo)v|| dp(wo)dn(v) : n € ProbK(IP’)} :
YxP
where v € U 1S a unit representative.

Proof. For g € GLy(R), we can alternatively define its norm
lgl|" := max {||ge1| , ||ge2| : {e1,e2}is a basis of R*} .

Note that all the norms in finite dimension are equivalent.
Let o : Probg (PP) — R be the continuous linear functional

a(n) = &(wo, 0)dp(wo)dn(0).

UxP
Then max {a(n) : n € Probg(P)} =: B is attained since Probg(P) is
weak* compact. Then it is enough to prove LT(A) = .
Let M := {n € Probg(P) : a(n) = }. Then M is non-empty, convex
and closed (hence compact). By Krein-Milman, M has at least one
extreme point. Moreover, the closed convex hull of extreme(M) is M.
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Let 19 be such an extremal point of M, then it is easy to see that
Mo is also an extremal point in Probg(P) (one can prove it easily by
contradiction that all the admissible extremal points of M must belong
to the extremal points of Probg(IP)). Then by Proposition N x no
is Ft-ergodic.

Then by Birkhoff ergodic theorem, we have for u x np-a.e. (w, 1),

B =a(mn) = &(wo, 0)dp(wo)dno(0)

YxP

N /;c+xp®(w7@)duN(w)dﬂo(@>

o1
= lim —
n—oo N,

i@ o (F*)(w,?)

1
= lim —log||A™(w)v||

n—oo 1N

1
< lim —log || A™(w)]]

n—oo M,

— L)
1
= lim Llog A" @)]]
n—o00 N,
N
< max hinjogp - log [| A" (w)e;
< p.

Here the last inequality is due to Theorem [.6] So L*(A) = 8.
This finishes the proof. O

3.4. Furstenberg-Kifer non-random filtration. In order to make
a better comparison, we first recall the Oseledets multiplicative ergodic
theorem (it is called “random” because the subspace depends on the
base point).

Theorem 3.8 (Oseledets). Let F' = Fy: Q x R* = Q x R?, F(w,v) =
(f(w), A(w)v) be a p-integrable cocycle given by A : X — GLa(R) over
an ergodic MPDS (9, f,v), then

(1) If LY (A) = L=(A), then Vv € R? non-zero,
1
lim —log |[|[A™(w)v|| = LT(A), v-a.e.w € Q.
n—oo n,

(2) If LT (A) > L~ (A), then there is a measurable map
w— V, C R?
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where V,, is a one dimensional subspace of R?, such that
A(w)Ve = Viw)
i.e. Vi, is an F- invariant section. Moreover, if v & V,,, then
1
lim —log||A™(w)v|| = L™ (A).
n—oo M
Otherwise, if v € V,,, then
1
lim — log [|[A™(w)v|| = LT(A)
n—oo M
Moreover, if f is invertible then there exists a measurable splitting
of the fiber: for v-almost every w € Q, R* = EX & E such that
£ _ ot
(2) lim,, o £ log ||A™(w)v|| = L*(A), v € EZ, v #0.

(8) lim,, %log ’sin A(E}rn(w), E}L(w))‘ =0.

Note that given any v € R*\{0},
1
—log || A" (w)v|| = L™ (A) or L*(A), v-a.e.w € Q.
n

But it could be that for some w’s, the convergence is to L™ (A) and for
other w’s to L*. Namely, given v, where the limit goes depend on the
base point w € 2. This holds for any cocycle over any ergodic base
dynamics. However, for random linear cocycles, we will show that the
filtration is non-random: 3V C R?a linear subspace, such that

(1) A(w)V =V v-ae. w e,

(2) if v € V\{0}, +log||A™(w)v]| = L~ (A), v-a.e. w € Q,

(3) if v ¢V, Llog||A™(w)v|| = LT (A), v-a.e. w € Q.
This ensures that the limit is independent of the base point. Moreover,

if A is quasi-irreducible, then V' = {0}, so Vv € R?\{0},

1

—log [|[A™(w)v|| = LT (A), v-a.e. w € Q.

n
In particular. by Lebesgue’s dominated convergence theorem, Vv €
R*\ {0},

1 n
E(log [|[A"(w)v]]) = L*(A).

Furthermore, the convergence is indeed uniform in v € St. This is the
main ingredient in proving the strong mixing of the Markov operator.

Before we introduce the Furstenberg-Kifer non-random filtration, let
us make some preparation.
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By Furstenberg’s formula, we know that
L*(A) = max {/ log || A(wo)v|| dp(wo)dn(v) = n € ProbK(P)} =0
YxP

where we denote a(n) =[5 plog || A(wo)v|| dp(wo)dn(v). Let
€ :={a(n) : n is an extreme point of Probg(P)}.
Thus we have max & = 8 (one can prove it by contradiction easily).

Lemma 3.11. We have LT(A) € &€ C {L*(A),L (A)}. In other
words, max & = LT (A) and if there are other elements in &, they are
Just L™ (A).

Proof. If ) is an extreme point in Probg (P), then uN x ) is F't-ergodic.
So by Birkhoff ergodic theorem, for uN x n-a.e. (w,?), we have

nh_g)loz Uo (FH)(w,0) = /X+ P\If(w,@)duN(w)dn(ﬁ)

= | &wo, 0)dp(wo)dn(v) = aln).
UxP
Note that the Lh.s. equals lim, . = log||A™(w)v|,v € o, |v|| = 1
which is either LT (A) or L~ (A) (here it is a bit subtle in the sense that
we already know the limit exists by Birkhoff for yN x n-a.e. (w,?), and
at the same time, by Oseledets we know Vv € R?\{0}, depending on
the base point w € X which belongs to a full measure set, the limit is
either LT(A) or L™ (A). Therefore, combining these two conditions we
obtain that the limit is either LT (A) or L=(A) for uN x n-a.e. (w,d)).
Thus € C {LT(A),L~(A)}. Since we already have max & = L1(A),
the lemma follows. O

Now we can formulate the main theorem in this subsection.

Theorem 3.9 (Furstenberg-Kifer non-random filtration). There is a
linear subspace V- C R? such that
(1) V is A-invariant, A(wy)V =V for p-a.e. wy € X.
(2) If n is an extreme point in Probg(P) and a(n) = L~(A), then
n(0) =1 where v € V.
(3) If v € V\{0} then
lim llog |A™(w)v|| = L™ (A), uN-a.e.
n—oo N

(4) If v & V, then
. 1 n . —+ N
Jim -~ log |A™(w)vl| = L7(A), p”-a-e.
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Proof. Case 1. #& =1, ie. &€= {L"(A)}. We will show that in this
case V = {0}.

By assumption, we have a(n) = g for any n being an extreme point
of Probg (P). Then necessarily, a(n) = 5,V n € Probg(P).

Indeed, let again M := {n € Probg(P) : a(n) = 8} which is non-
empty, convex and compact. So by Krein-Milman,

M = Co(M) D Co(extreme(Probg (P))) = Proby (P).

Thus M = Probg(P). This shows a(n) = 5, Vi € Probg(P). Since «
is constant, by Theorem 3.6 we have Vv € R*\{0},

1
—log [|A™(w)v|| = B = L*(A), as n — oo
n

for pN-a.e. w € X*. Therefore if we put V = {0}, then the theorem
holds.

Case 2. #& =2, ie. &€= {L"(A),L (A)} and LT(A) > L™ (A).
Let

1
V= {v € R? : limsup — log || A" (w)v|| < L™ (A), pM-a.e.w € X+} :
n

n—oo

We are going to prove V satisfies (1)-(4). We do several steps.
(1) V is a linear subspace. Let vy,v3 € V', a,b € R. Then

[A™ (W) (avy + bug) || < af A" (w)va || + [0] | A™ (w)vell
< max {|af [A"(w)or ], [b] [[ A" (w)0al[} -

Take “1/nlog” on both sides and let n — oo (taking lim sup),

1
lim sup — log || A™(w)(avy + buy)||

n—oco 1

1 1
< max {lim sup — log || A" (w)v1 ]| , lim sup — log ||A”(w)v2||}
n

Nn—00 n—oo 1

< Li(A)v

for yN-a.e. w € X*. Thus av; + bvy € V which shows V is a
linear subspace.

(2) If n_ € Probg(P) which is extreme such that a(n-) = L™ (A) (in
case 2 there are such measures), then we have n_(0) =1,v € V.
Indeed,

n—1

L~(4) = a(n ) = tim =3 Wo (F*)i(w,9) = lim —log | A" (w)o]

n—00 N, < n—o0 1
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holds for pN x n_-a.e. (w,®). By Fubini’s theorem, for n_-a.e.
v € P we have

lim log [[A™(w)v|| = L™(A), pMN-ae we XT.
n—oo

This shows for such ¢’s, v € V. Thus n_(0) = 1 where v € V.
In particular V # {0}, otherwise o = ) = n(0) = 0 # 1.
(3) V' is a proper subspace. We already have V # {0}, so it is
enough to show that V # R2
Iny, st.a(ny) = LT(A) > L™ (A).
and

.1 n .
a(ny) = lim —log|[A™(w)vll, pu" x ni-ae. (w, ).

n—oo 1N,

Such v’s are not in V, which shows V # R2.

(4) V' is A-invariant. Let n_ be an extreme point in Probg(PP) s.t.
a(n-) = L~ (A), then we know n_(0) = 1 with v € V. Since 7_
is K-stationary, we have V¢ € L*°(IP)

[ein-= [ Qudn- = [ o(Atn)s)duun)dn- (o)

Take ¢ = 1;, then
1= (0) = [ Lo = [ Lo(Ale)o)i-(5)den)
~ [y O @)
— [ (AT o))

This shows 7_(A(wp)~tv) = 1 for pM-a.e. wy € B. Therefore
Vo € V, A(wo)v = v for pN-ae. wy € . Namely, V is A-
invariant.

(5) If v € V\{0}, then {®

V= 77() n—(0) = 1 where n_
extreme such that a(n_) (
-1

). Moreover,

12
L~

a(n-) = L™(4) = lm nZ\Ifo #i(w,0) = Tim ~ log [ A" (w)o]

n—oo M
for N x n_-a.e. (w,®). This implies
- .1 n
L(4) = Jim *log | 4"

for pN-a.e. w e X
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(6) Let v ¢ V, V is a one-dimensional linear subspace which is A-
invariant. By a change of variables, we can assume that v =

1
(0) . Then

and

It is easy to see that for pN-a.e. w € X7

LH(A) = max{%log by ()] ,%log|dn(w)|} |

o @5 -

1 1 (1 B
Elog]bn(w)] = Elog A" (w) (O)H — L7 (A), as n — oo.

Moreover,

So we have

Thus )
~log|d,(w)| — LT(A), as n — oco.
n

almost surely.
Now take any v ¢ V', then

which implies that
A (w)vl| = |dn(w)] -
Thus ) )
—log [[A"(w)v]] = —log |dn(w)| — LT (A).
n n

Combining with the Furstenberg-Kifer theorem, we have
1
—log [[A™(w)vl| = L™ (A)
n

for pN-ae. we XT.
This finishes the whole proof. O
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3.5. Uniform convergence of the directional Lyapunov expo-
nent. Recall that the definitions of irreducibility and quasi-irreducibility
is defined as follows:

Definition 3.10. A linear cocycle A is irreducible if there is no in-
variant proper subspace (which is a line). Namely, #I C R? s.t.
Alwo)l = 1, prace. wy € ¥. A is quasi-irreducible if 1 € R? such
that [ is A-invariant and L(A];) < LT(A).

Remark 3.4. A is quasi-irreducible if and only if the Furstenberg-Kifer
non-random filtration is trivial: V = {0}, i.e. Vv € R?\{0},

1
—log || A"(w)v|| = LT(A), pN-ae.w e XT, as n — oo.
n

Moreover, it is also equivalent to saying that «(n) = 3, V1 € Probg(P).

Theorem 3.10. Assume that A is quasi-irreducible and L*(A) >
L=(A), then
1
E(—log [[A™(w)v|]) = LT (A), as n — oo
n
uniformly in v € St.

Proof. Since A is irreducible, by the previous remark and Lebesgue
dominated convergence theorem, we have the pointwise convergence:

E(llog |A™(w)v]|) = LT (A), Vv €S', as n — oo.
n

Assume by contradiction that the convergence is not uniform, then
36 > 0 and a sequence of {v,, }x>1 C S* such that

1
E(n—log | A™ (w)vy, ||) — LT (A)| > 6, VE > 1.
k

To simplify the notation, we just write n standing for n, but we should

bear in mind that from now on {n} is actually a subsequence. More-

over, we may assume that v, — vy € S* by compactness of the circle.
Note that for n > N with N large enough, it can not happen that

1
E(Elog |A™ (w)vnl) > L*(A) +6
because
1 n 1 " n )
IE(;logllfl (W)vn|)) < IE(ElogllA (@) < L™(A) + 3

Thus we only need to consider the case when

E(log | A" (@)l < L*(4) 5.
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We are going to prove it actually can not happen either. To achieve
that, we give a claim first and prove it later.
We claim that

A (W) N
liminf ————= = c(w) >0, p -aec.we X,
nooe [[AM (W)
Accepting it for now, we get
[[A™ (w)on|
1og —0
[A™ (W)

almost surely as n — oo. By Lebesgue dominated convergence theo-

rem,

| A" (w)vnl
[ A™(w)]l

However, the Lh.s. is equal to

1
E(—log )— 0, as n— oo
n

1 1 )
E(-log [|[A"(w)wnll) = E( log[|[A*(w)]]) < =5, as n— oo,

This is a contradiction. So we prove the uniform convergence in v € S*.
Before giving the proof of the claim, we recall the concept of singular
values and singular directions. These are some ingredients in the proof
of Oseledets.
Let g € GLy(R), the singular values of g : s, (g) > s_(g) > 0 are the
eigenvalues of (g*g)% It turns out that

s+(g) = max||gv]| = [|g]]
vES
is the maximum expansion of g.
s-(g) = min [lgv| = |lg]l
veES

is the minimum expansion of g.

If s1(g9) > s_(g), we can define (up to a sign) the singular directions
v4(g),v_(g) € S! as the eigendirections of (g* g)% corresponding to the
eigenvalues s, (g),s_(g). Note that vy (g) L v_(g). We can do the some
for the transpose ¢g* and we have s.(g) = si( ), gv+(g) = s+(g)v+(g").

For any w € S', we have w = av, (g) + bv_(g) where a = (w, v, (g))
and b = (w,v_(g )) Applying g on both sides of the equation, we get

* —1)—1 *
gw = allgllve(g") + o flg7H| " v-(g").
Thus [lgwl| > [al||g]]
By assumption, we have A™(w) € GLy(R) and LT(A) > L~ (A).
Moreover,

LH(A) = lim 2 log s, (A"(w)),

n—oo M
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and .
L7 (A) = lim —logs_(A™(w))
n—oo N

for pN-a.e. w € XT. Therefore, for almost every w, 3N, such that
Vn > N,, wehave s (A" (w)) > s_(A™(w)). Thus in this case, v4 (A" (w))
are well defined.

For n > 1, let u,(w) = v4(A™(w)) when it makes sense (e.g. n is
large enough). Then u, : X™ — S! is the most expanding direction of
each n-th iterates. We also write 4, : X* — P as the corresponding
projective version. We list two facts of u,, and 4, below:

e Fact 1. {i,},>1 converges as n — oo for uMN a.e. w € XT and
we call the limit respectively oo : X7 — P and uy : X+ — St
o Fact 2. uy(w)t = B~ (w) for pN ae. we XT.

Now we can prove the claim, by direct computation

| A" (w)vn]|
——— > (v, v (A" (W)))| = [(vn, up)| -
Take liminf on both sides, we have
o [AT (W)
lim inf ————— > |(vg, Uoo (w))|
noo [|A(w)]] ’

for pN ae. we XT.

Note that if (vg, U (w)) = 0, then v € Uy (w)* = £~ (w). However,
vo € E~(w) happens for a set of w’s of probability zero because of
quasi-irreducibility. This shows

ATZ
lim inf M >0
nooo || AM(w)]
for N a.e. w € X*, which proves the claim.
This finishes the whole proof. 0

3.6. The strong mixing of the Markov operator. Our setup is
the following. (X, u1) is a probability space. A : ¥ — GLy(R) is contin-
uous, quasi-irreducible and L*(A) > L~ (A). Moreover, there is some
constant C' such that [|A|| < C' (a consequence by being continuous

on a compact set) and ||A7'|| < C' (extra assumption). The Markov
operator Q = Q4 : L>®(P) — L*(P) is defined as

Qo) = / o (Alwo)d)dpwn).

_ llprgll

infini i = Tollal P € P24 € 4
On L*(P), the infinity norm is defined by ||¢||, = supscp |¢(p)|. For

Define the metric on P by §(p, ¢) = sin Z(p, q)
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a € (0,1), we define the a seminorm on L*(PP) as

This is not a norm as v,(p) = 0 = ¢ = const. We call it a-Hélder
seminorm. Then we can define the a-Holder norm by

ellq = ll¢lloe + valep).

Denote H(P) := {¢ € L=(P) : va(p) < 00}. Then (Hy(P),|],) is a

normed space. For the observable

$ald) = / log || A(wo)u]| dp(wo).

it is easy to see that ¥4 € H,(P).
Our goal is to show that Ja € (0,1) s.t. Q4 is strongly mixing on
H,(P). That is,

l

with constants ¢ > 0 and o € (0,1).
Define

@i - [ sodnH < co™ gl ¥ p € HalP)

o0

A

(U.Jo)q)] i d[l;(OJ())

5(121((/-’0)13,
o(p

2| b

Ka(A, 1) = sup /
>

p#q

Y

It measures the average Holder constant of p — fl(wo)ﬁ. We will prove
several propositions about X,.

Proposition 3.12. Vi € H,(P), v,(Qa(p)) < Ku(A, )va(p).
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Proof. Given ¢ € H,(P),¥p, ¢ € P, we have

[Qa(p)(P) = Qalp)(9)]
( q)*
p) —

P(Alwo)g)dn(wo)|

<va(p)

™
<>,

on both sides, we get exactly

Va(Qa(p)) < KalA, 1)va(ep).
0

Proposition 3.13. The sequence {K, (A", u™) }n>o is sub-multiplicative:
Vn,meN,

Ka (A", p") < Ko (A", u")Ka(A™, 1),
Note that for n =0, K, (A", u™) = 1.

Proof. Direct computation shows

wim by _ S(A @)p, A @)D |
KA W )_ﬁyég/zwm o(p, q) ] A )
. S(Amm (w)p, At (w)g) | [S(Am @)p, Am@)D) | i
_#E’/w 5(Am(w)p, Am(w)q) ] 5(p.9) ] )

du"dp™

. S(A™(w)p, A" (w)g)
_#‘q?/zm 5(5.4) ] .
Sg{a<Anaﬂn)xa<Amaﬂn)~

Note that the last equality holds because A takes value in GLg(R)
which never maps a line to zero. U

Remark 3.5. As A and A™! are assumed to be bounded by some
constant C' > 0, we have that given any n € N, for 0 < a < ﬁ, we
have K, (A", u") < e =: L.
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Proposition 3.14. Vn € N, Qan = (Qa)".
Proof. By definition,

Qu()(0) = / (Aw)D)dp(wo).

Then
(QaV(o)(0) = /@Mx<>ﬁw%>
/ / )o)dp (o) ()
— (Qe)(9)(0).
The proof follows by mductlon‘ O

Proposition 3.15. Given a > 0 and two point p # § € P, we have
S(Awo)p, Aw)d) | _ Idet Awn)|” [ 1 I
Noa — 2« + 200 | °
(P, q) 2 | A(wo)p| [ A(wo)qll
for any wy € 2.

Proof. By the property of exterior product, we have
[ Awo)p A Alwo)qll = [[A2A(wo) (p A )| = |det Awo) llp A dll -

Hence,

6<A<wo>ﬁ,fx<wo>cz>r B {nAwO)pAA(wmu el ||q||r

5(p, 4) | A(wo)pll | A(wo)qll  llp A gl

[ |det A(wp)| }a
[ Awo)pll [[Awo )l

|det A(wo)|” { 1 1 ]
S 2c + 200 | -
2 [A(wo)plI™ [l A(wo)q]
Here the last inequality uses vab < %(a + b) for non-negative a and
b. O

Proposition 3.16. Given a cocycle (A, ) € L (X, GLy(R))xProb(%),
we have that

det A(wp)|” det A(wg)| 1
KalA, ) < sup %du(wo) = sup E( {M]
pel Jx || A(wo)pl| peP L[| A(wo)pll

holds ¥ o > 0. Note that |det A(wo)| = s1(A(wo))s2(A(wp)).-

Proof. 1t follows from the definition of K, and the previous proposition
by taking integral and supremum in p # ¢ on both sides. 0
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Proposition 3.17. Let (A, u) € L>® (X, GLy(R)) x Prob(X) be a quasi-
irreducible cocycle with LT (A) > L™ (A). There are numbers « € (0, 1),
k€ (0,1) andn e N s.t. Ko(A™, 1) < K.

Proof. We know by Theorem that as n — oo
E(log | A" (w)u]) - L*(4)
uniformly in v € S*. Thus
E(log | A"(@)ol] ) = ~2- L*(4)

uniformly in v € S'. Therefore, Ve > 0, Vv € S', 3N = N(e) € N
which does not depend on v, such that Vn > N we have

1
—2LF(A) —e < E(ﬁ log | A™(w)v|| ) < —2L*(A) + ¢

Therefore, by choosing e sufficiently small e.g. € < i[[ﬁ (A) — L= (A4)]
and n large enough, we have

E(log [| A" (w)v]| ™) < n(—=2L"(A) +¢)
Moreover, we have
log |det A™(w)| = log |s1(A™(w))|+log |sa(A™(w))] < n(LT(A)+L™(A)+e).

Combining these two estimates, we have

|det A" (w) _ n
W <n(LT(A)+ L (A) +¢e)+n(—2L"(A) +¢)

=n(L™(A) — LT(A) + 2¢)

ne 5 (L7(4) — L(4))

< -1

IN

as n is sufficiently large and L1(A) > L~ (A).
Making use of the inequality

@ x’ ||
€ §1+$+?6 ,
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we have Vv € S!,
det A™(w)[1°
E(P i ()2\} )
A" (w)o|

alo ‘detAn(w)‘
—E(e gHA"(w)vH2)

. Jdet A" ()12 A
<E(1 + alog 19tA"@) (2108 P fatog Mo )
- 147 (w)o]? 2
<1 —a+0(a?)
<k <1

as we take « sufficiently small. Therefore, by the previous proposition
we get Ko (A" u") <k < 1. O

Remark 3.6. In practice, the advantage of our method here is that
we can give a precise lower bound of the Holder exponent « for any
specific admissible model (A, p). To achieve this, just choose the first

n € N such that
|det A™(w)|

0g —— 5 < —1.
A" (w)vl]
for any starting point v € S! (this arbitrary choice of v is ensured by

uniform convergence) and then use n to determine « by making the
desired term smaller than 1. Namely, our « is exactly computable!

Now we can easily prove that ()4 is strongly mixing.

Theorem 3.11. Q4 is strongly mizing on H,(P) where o € (0,1) is
given by Proposition[3.17. In fact, we can prove a stronger statement.
That is, for ¢ € H,(P), Vn € N

Q4(p) — / pdn

where Cy > 0 and o € (0,1) are constants.

Proof. By Proposition and [3.14] we have V¢ € H,(P),
Va(Q4(#)) = va(Qas(¥)) < Ka(A%, 1%)va(p), Vs €N,

Choose the parameter n from Proposition|3.17} For any m = kn+r €
N with k,r € N and r < n, we have

Va(QR(9)) < [KalA", ") Kol A7, 1" valp) < K° - Loa(g).
Then if we denote o = kn < 1, then
V(@4 () < Co™va(p),

< Goo™ el

07
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where C' is a constant.
Vi € Hy(P), we have Vn € N

Q% (p) —/wdn Q4(p) —/sodnH + Va (Q’A(so) —/sﬁdn)'
Note that N
o (@400) = [ ) <00 @309 < C"ue) < €0 el

Since v, (Q% () < Co"v,(p), then Q% () is almost constant in 0 € P
Vp#qel

[e%

|QA(0) (D) — Qa(p)(9)] < Co"valyp).
Thus Vp € P,

Qﬂ@@—/@mwﬂsow%@»

Note that 7 € Probg (PP) is Q a-invariant. So [ Q"%(¢)dn = [ ¢dn. Thus

‘QZ(@D) - / dn
To conclude,

Q%4(p) — / pdn

This finishes the proof. U

< Co"va(p).

o

< 200" va(p) < 2C0" [lol, -

[0}

By Lemma , we get that Q is strongly mixing on € = H, (X x P) :=
{p € C%Z x P) : vo(Ilp) < oo}. Note that IIH, (X x P) = H,(P).

Denote (M, K, 1,€) = (X x P, K, u x 1, Ho (X x P)), apply Theorem
we obtain Theorem [3.2]

4. MIXED RANDOM-QUASIPERIODIC DYNAMICS

We will derive statistical properties for the following skew-product
dynamical system.
Let X = T¢ and p € Prob(T¢). Consider the map

Y2 xTd = S2x T flw,0) = (0w, 0+ wy).

We will consider the MPDS (X% x T9, f, uZ x m) where m is the Haar
measure on the torus T¢. For simplicity, from now on we set d = 1.
Things are the same in the higher dimensional torus. For d = 1, m is
just the Lebesgue measure on the circle.
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Theorem 4.1. (XZ2xT, f, u%xm) is ergodic if and only if Vk # 0 € 7Z,
Ja € supp(p) such that ka ¢ Z. In particular, if 3o € supp(p) with
a ¢ Q, then f is ergodic.

Remark 4.1. A simple example of not having any irrational number
in the supp(p) but still having ergodicity is supp(u) = {%}neN.

Consider the Markov chain on ¥ x T:
(WO,Q) — (w1,9+w0) — ((,UQ,@—'—WO +W1) — e
Its Markov kernel on > x T is defined as

K0 = A 0w, 0-+wo)dp(wr).

The corresponding Markov operator Q on L®(X x T) is

oo, ) = / (w10 + wo)dp(wy).

by

Our goal is to prove that ) is strongly mixing on an appropriate
space of observables. To achieve this, we will make some preparations.

4.1. Some basic Fourier analysis concepts. Let ¢ € L'(T), its
Fourier coefficients are

1
o(k) ::/ o(x)e ™ dy, Yk e Z.
0

Note that roughly speaking,
+o00

olr)~ Y plk)emte

k=—oc0
where the r.h.s. is the Fourier series of . Moreover, for N € N let
N
Snp(a) =Y @lk)e* ™™
k=—N
be the N-th partial series.
The Fourier series “represents” the function in certain sense.
(1) If ¢1(k) = po(k), VK € Z, then @1 = @9 m-a.e.
(2) If p € L*(T), then
+o0

pla) =Y p(k)erm,

k=—o00

in L*(T). That is |[[Sye — ¢|l, = 0 as N — cc.
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(3) If ¢ is Holder continuous, then

e}

o(x) = Z @(k)e*™ ¥z eT.

k=—0o0

(4) If ¢ € LP(T) with p > 1, then by Carleson’s Theorem

o

o(x) = Z (k)e*™™  m-a.e.x € T.

k=—oc0

We also recall estimates on the size of the Fourier coefficients. For
example, it is clear that |o(k)| < ||¢ll,,Vk € Z and ¢(0) = fol o(x)dz.
We also have the Riemann-Lebesgue lemma showing that if ¢ € L,
then ¢(k) — 0 as |k| — oo. Moreover, if ¢ is a-Hélder, then |¢(k)| <
C- # where C' ~ |¢]],-

There are other facts which concentrate on the approximation prop-
erty. By Weierstrass approximation theorem, every continuous function
is uniformly approximated by trigonometric polynomials of the form

D= Z cre®™ ¢, € C, degp < n.

k=—n

If ¢ is Holder, we have the following theorem.

Theorem 4.2. If ¢ is a-Holder continuous, then ¥Yn € N, dp, which
are trigonometric polynomials with degp, < n such that

1
I = Pulloe S lella —-
n
Moreover, Vk € Z, |p, (k)| < |&(k)|.

4.2. Mixing measures. Let u € Prob(T). We consider the Markov
chain on T:

0 —0+w)—0+w)+w —---
The corresponding Markov kernel K is

Kg = /(59+de”(&)0).
T
The corresponding Markov operator is
@=Qu: LNT) > LD, Qpl6) = [ (0 + wn)duin).
T

Note that Q is bounded on L!(T,m), L*(T,m) and L>(T,m) because
m is translation invariant, which also ensures that m is K-stationary.
Hence (T, K, m) is a Markov system.
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Our first goal is to show that the Markov operator ) of the Markov
system (T, K,m) is strongly mixing under certain assumptions on pu
and for an appropriate space of observables.

Let us make some preparations first. Recall that the Fourier coeffi-
cients of a measure p € Prob(T) is defined by

(k) ::/Te%ikxdu(x).

It is equivalent if we put “e~27**” in the definition. Observe that if
p < m, namely dy = hdm with h > 0 and [ hdm = 1, then

k) = /T =27 R b (0 i (2) = Fo(—).

We call ex(z) := e*™* : T — C, k € Z “characters”. It is clear that
they are group homomorphisms.

Lemma 4.1. The characters {ex,k € Z} form a complete basis of
eigenvectors for the Markov operator Q : L*(T) — L*(T). That is,
Qer = fu(k)ex,Vk € Z and if o = > 5 p(k)ey in L*(T,m), then

o0

Qo= ik)@(k)ex, in L*(T,m).

k=—o00

Proof. By the linearity of @), it is enough to prove the first equality.
For any 6 € T and any k € Z, we have

Qex() = /Tek(ﬁ—l—wo)d/i(w())
:/Tek(@)ek(wo)dﬂ(WO)
e (0) / exdpt = ex(0)ak).

Thus the result follows. O

Remark 4.2. It turns out that the mixed model (X% x T, f, u* x m) is
ergodic if and only if (k) # 1,V k € Z\{0}, if and only if V p € C°(T)

n—1

1 .
—ZQ3¢(0)—>/¢dm as n — oo, V8 eT.
n

=0

For completion, we borrow all the equivalent conditions of ergodicity
from [I]. To make it consistent with our pedagogical context, one can
simply let d = 1 in the following theorem.



STATISTICAL PROPERTIES FOR CERTAIN DYNAMICAL SYSTEMS 65

Theorem 4.3. Let 1 € Prob(X) where ¥ = T¢, and consider the skew
product map on ¥ x T¢ given by f({8:},0) = (6{B:i},0 + Bo). The
following statements are equivalent:
(1) f is ergodic w.r.t. % x m;
(2) f is ergodic w.r.t. uN x m;
(3) Every m-stationary observable o € L>°(T?) is constant m-a.e.;
(4) ilk) # 1 for cvery k € 24\ {0};
(5) For every k € Z\ {0} there exists o € ¥ such that (k,a) ¢ Z;
(6) T¢ = U,>1 X" where ¥ = supp(p) and X" := X+t ¥Yn > 2;
(7) m is the unique p-stationary measure in Prob(T?),
(8) limy o0 2 3070(Q10)(0) = [raodm, VO €T Vo € COTY).

Proof. (1) = (2) holds trivially because f in (2) is a factor f in (1),
i.e., because of the commutativity of the following diagram of measure
preserving transformations.

x I x

x+ Ly x+

Conversely, (2) = (1) holds by Lemma 5.3.1 in [6].
The equivalence (2) < (3) follows from Proposition 5.13 in [7].

Given a bounded measurable function ¢ : T? — C, we have ¢ €
L*(T? m). Consider its Fourier series

Y= Z o(k) e,  with eg(8) := 2 k0,

kezd

A simple calculation shows that

Qup =Y filk) (k) ex.

kezd

(3) = (4): If a(k) = 1 for some k € Z¢\ {0}, then e; is a non
constant m-stationary observable. In other words, if (4) fails then so
does (3).

(4) = (3): Given ¢ m-stationary, comparing the two Fourier devel-
opments above, for all k € Z* (k) p(k) = (k) < @(k) (k) —1) =
0. By (4) we then get ¢(k) = 0 for all k € Z?\ {0}, which implies that
¢ = ¢(0) is m-a.e. constant. This proves (3).
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Since fi(k) is an average of a continuous function with values on the
unit circle, we have

ak)=1 & %) —1 VaeY < (ka)e€Z YacX.
This proves that (4) < (5).

(5) = (6): Let H = U,>1 2" and assume that H # T¢. By definition
H is a subsemigroup of T¢. By Poincaré recurrence theorem, H is also
a group. By Pontryagin’s duality for locally compact abelian groups,
there exists a non trivial character e; : T — C which contains H in
its kernel. In particular this implies that there exists k € Z<\ {0} such
that (k,8) € Z for all § € ¥. This argument shows that if (6) fails
then so does (5).

(6) = (5): Assume that (5) does not hold, i.e., for some k € Z\ {0}
we have (k,«) € Z for all « € ¥. Then e, is a non trivial character of
T¢ and H := {# € T?: () = 1} is a proper sub-torus, i.e. a compact
subgroup of T¢. The assumption implies that ¥ C H, and since H is a
group, S™ C H, Vn > 1. This proves that (6) fails.

Since the adjoint operator QF : Prob(T¢) — Prob(T%) satisfies
Qim = pxm, denoting by u* := p*---x p the j-th convolution
power of i, we have (Q)"dp = ™" ¥n € N.

Lemma 4.2. Any sublimit of the sequence mw, = % Z?:_ol W is a -

stationary measure.

Proof. Given ¢ € C°(T?),

i
L

(Qup — ¢, (23)do)

S|

<QM50 — ¥, 7Tn> =

<.
- O

3

(Q¢)(0) = (2,0)(0)

[e=]

((Qup)(0) = ¢(0)) = O(=).

Hence, if 7 € Prob(T?) is a sublimit of ,, taking the limit along the
corresponding subsequence of integers we have

<.

1
n
1

3

<30> Q:ﬂ- - 7T> = <Qu90 - (1077T> = Oa
which implies that QZW = T. O
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(2) = (8): By ergodicity of f w.r.t. uN x m and Birkhoff Ergodic
Theorem, given ¢ € C°(T9) there exists a full measure set of (w,0) €
YN x T¢ with

n—1
1 )
lim — 0+ 77 = d
Jim ]290( +77(w)) /90 m,
where 77(w) = wp + -+ + w;_1 and w = {w, }jen. Hence there exists a
Borel set B C T? with m(B) = 1 such that, applying the Dominated
Convergence Theorem, we have for all 8 € B,

n—1
1 ;
Jim 37(Qle)0) = [ pam.
The set B depends on the continuous function ¢, but since the space
C°(T9) is separable we can choose this Borel set B so that the previous
limit holds for every 8 € B and ¢ € C°(T?). This implies the following
weak* convergence in Prob(T4):

n—1

1 Z .
1 _ *3J =
nl—l>r+noo n < O(Q,u) 50 -
]:

Given any 6’ ¢ B take § € B. Convolving both sides on the right by
59/,9 we get

1 n—1 1 n—1
lim — E (Q* )359/ = lim -— E /L*j * 59 * 591_9 =1m * (591_9 =m,
n—+oo N 4 0 # n—+oo N, £ o
J= J=

which proves (8).

(8) = (7): If there exists n # m in Prob,(T%), then there exists at
least one more ergodic measure ¢ # m such that ( is an extreme point
of Prob,(T%). Choosing ¢ € C°(T?) such that [¢d( # [¢dm, by
Birkhoff Ergodic Theorem there exists § € T¢ such that

1 n—1 '
5 >0 - [eic# [oam
which contradicts (8).

(7) = (6): Consider the compact subgroup H := U,>x". If (6)
fails then H # T? and by Lemma we can construct a stationary
measure m € Prob,(T¢) with supp(r) C H. This shows that m # m
and hence there is more than one stationary measure. 0

In fact, we need stronger conditions than ergodicity of u to prove
that @) is strongly mixing.
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We move forward step by step. One concept stronger than ergodicity
is mixing.
Definition 4.1. (Q,m) is called mixing if V¢ € C°(T),

Q"g@(@)—>/gpdm as n—o0o, VOeT.

It is clear that the mixing of (@, m) implies the ergodicity of f, like
the similar statement in dynamical systems. Moreover, mixing has
some equivalent characterizations as follows.

Theorem 4.4. The following statements are equivalent.

(1) (Q,m) is mizing.
(2) |i(k)| <1,Vk € Z\{0}.
(3) Vk € Z\{0}, 3o # 5 € supp(p) such that k(o — ) ¢ Z.

Corollary 4.3. If Ja # 5 € supp(u) such that 5—a ¢ Q, then (Q, m)
18 MATINgG.

Proof. (1) = (2). If 3k € Z\{0} such that |a(k)| = 1, then since
Q"er, = fu(k)"ex,Vn € N, we have

|Q"ex| = |u(k)"ex] =1 - 0= /ekdm as n — oo.

This contradicts the mixing condition.
(2) = (1). First step. Let p = S_n_\ crex be a trigonometric
polynomial. Note that [ pdm = ¢y and (0) = 1, so we have

Q”p—/pdm: Z ceiv(k)" ey
0<|k|<N
Hence
HQ”p— / pde < Y lalla®)”
o0 0<|k|<N

Let 0 = max {ji(k) : 0 < |k| < N} < 1. Then

Q"p—/pde <2N|p|l, " — 0 as n — 0.

Second step. Given any ¢ € C°(T), e > 0, by Weierstrass approxima-
tion theorem Jp a trigonometric polynomial such that || — || < €.
Moreover, by the first step dn € N such that HQ”p — fpdeoo < €.

Writing ¢ = p+ ¢ — p, then

Qe =Q"p+Q" (¢ —p)
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and
/@dm:/pdm—i-/(@—p)dm.
Therefore,
@ [ean| <@ [oam] 1 s+ 106D

<e+e+e=3e

This proves mixing.

(2) & (3). It holds if and only if 3k € Z\{0}, |u(k)| = 1 <
Jk € Z\{0}, Ya # B € supp(p) s.t. e?™ke = 2mkB Tt is further
equivalent to ‘ Ik e%ikadu(a)‘ = 1 if and only if €™ is constant for
p-a.e. «, which this is obvious. U

For the sake of the readers, we give a more general lemma here
clarifying the last part of the proof above. In fact, it will also be used
later.

Lemma 4.4. Let (€2, p) be a probability space. Assume f : Q — C
1s Lebesgue integrable. If |fQ fdp‘ = fQ |f|dp, then arg f is constant
p-a.e. In other words, 360y € R such that f(x) = e |f(x)| for p-a.e.
x € (.

Proof. By assumptions, [, fdp € C. Let 6 := arg( [, fdp). Then

/Q fdp = ¢ /Q fdp‘ .

/ fdp‘ - [ sdo
Ze‘w“/ﬂfdp—/glfldp

= [le7s ~ e flp
—p [ o0 £ _ | =it

/Q (=% f — |e= f[Jdp
_ /Q R f) — e f[Jdp

<0.

Then,

0=




70 A. CAIL P. DUARTE, AND S. KLEIN

This implies R(e % f) = ‘e*ieof‘ > 0, p-a.e. In particular, (e % f) =
0, p-a.e. Therefore,

e R f) = || =111, pac.
which gives f = e | f|, p-a.e. O

In the following, we are going to prove two propositions in which @)
is strongly mixing with different rates under different assumptions of
the measure p € Prob(T). It turns out that p being mixing is also
not enough for our purpose. So we will consider the so-called mixing
Diophantine measures (to be defined later) and absolutely continuous
measures. In fact, absolute continuity implies mixing Diophantine, but
to warm-up, let us first assume that p < m < dp = hdm with b > 0
and [ hdm = 1.

Lemma 4.5. If u < m then 3o € (0,1) such that |u(k)| < 0¢,VEk €
Z\{0}.

Proof. By definition, fi(k) = [e***du(x). Then by Lemma we
have (k) < 1,Vk € Z\{0}. Otherwise " = ¥™ik% for some 6, €
T, p-a.e. which contradicts < m (by Riemann-Lebesgue).

Since p < m, by Riemann-Lebesgue we have

(k)] =

Hence 3N € N such that (k)| < 3,V|k| > N. Let

ﬁ(—k)‘ 0 as |k — oo

1
op 1= max{i, ()]0 < |j] < N} < 1.
Then (k) < 0o,V k € Z\{0}. O
With this lemma in hand, we can prove the following proposition.

Proposition 4.6. If p < m, then Q s strongly miring with expo-
nential rate on any space of Holder continuous functions H(T),Va €
(0,1). That is, 3C < o0, 0 € (0,1) such that

H@w— / sode < Cllgllo™ VeI (T).

In fact, o = 0y®.

Before we formally give the proof, we first describe the attempt to
prove it.
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Recall that e (0) = €™ hence Qe;, = fi(k)e, and Q"ex = ji(k)"ey.
If we write ¢ € H,(T) as a Fourier series

o

o= @k
k=—oc0
Then
Q=Y ek er =3 Gk e, + / odm.
k=—00 k#0

Then (we hope to have)

HQ% -/ sodeOO G

k=0

In general this is not allowed because the infinity sum is not necessarily
absolutely convergent.
Since p < m, |u(k)] < o9 < 1,VEk # 0. We have

\ Q" /sode <ot 316kl

k40
There is still a problem of an infinite sum which may not converge
unless we assume some sufficient conditions like ¢ € C'*¢. However,
we want to deal with less regularities like Lipschitz and Holder. There-
fore, we really have to change our minds and use approximations of
trigonometric polynomials. Let us start the formal proof.

Proof. Fix n to be the number of “iterations”. Let N be the degree
of approximation which will be chosen later. Since ¢ € H,(T), by
Theorem there exists py trigonometric polynomial of deg py < N
such that [l¢ — pnllo S ll¢ll, 5= In fact, py is the convolution of ¢
with the Jackson kernel,
al 1
Py =Y ek, el < @R S el W
k=—N

Therefore, we can write ¢ = py + (¢ — py) := pn +ry. So by linearity
we have

Q" =Q"pn +Q"ry

/@dm: /dem—l—/rNdm.

and
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Thus
Q" p — /(pdm =Q"py — /dem +Q"ry — /TNdm,
which shows that

HQ% -/ gode < H@”pN -/ demH Qv+ [ ol d.

o0

Due to the estimates on ry, the second and third term in the r.h.s. are

smaller than C'[|¢l|, = for some constant C' > 0. So let us estimate

the first term. Since py = Z,iv:_N CLek,

N

Q'px = Y crji(k)"es.

k=—N

This implies

@ [t < X jallar S ol o5y

0<|k|<N

Combining the estimates above, we have

n n 1
@~ [ Sl logn + 51
Choose N € N such that off N'=* = <. Thus
1 n
N = (_) )
0o
hence
N = [og]"
Take 0 := of}, we conclude the proof. O

Remark 4.3. If we consider T¢,Vd > 1, then similar computation
yields o = oy 4.

Up to now, we know that

(1) if u < m, then |u(k)| < o9 < 1,VEk € Z\{0}.

(2) if (Q,m) is mixing, then |i(k)| < 1,Vk € Z\{0}.
For item (1), we already proved Proposition [4.6l However, it turns
out that in order to obtain a similar but weaker proposition, (2) is
not enough. For our purpose, we shall introduce the notion of mixing
Diophantine.
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Definition 4.2. We say u € Prob(T) satisfies a mixing Diophantine
Condition (mixing DC) if

(k)] <1 - =7, Yk € Z\{0},

!kl
for some ~, 7 > 0.

This is inspired by the concept of the Diophantine Condition (DC)
for numbers. We say that o € [0, 1) satisfies the Dionphantine Condi-
tion DC(y, 7) if

1nf]k04—]] > — Vk e Z\{0}.

|/f|
Note that here 4 > 0 but 7 > 1. This is because when 7 = 1, DC(~, 1)
is of Lebesgue measure zero. If 7 < 1, DC(v,7) is empty. For the
mixing DC, any 7 > 0 is fine (because the space of probability measures
on T is infinite dimensional).

We give some examples regarding mixing DC measures.

(1) If p < m, then p is mixing DC with any 7 > 0.

(2) If u = 4, then a(k) = [e*™**ds,(z) = e*™**. This shows
|f(k)| = 1,V k € Z which implies that ¢, is not mixing (DC).

(3) f p=1tdo+ (1 —1t)ds with ¢t € (0,1) and f —« € DC, then p is
mixing DC.

(4) If u € Prob(T) is finitely supported such that Ja, 8 € supp(u)
such that g — a € DC, then g is mixing DC.

(5) If py is mixing DC, for any t € (0,1] and po € Prob(T), p =
tpy + (1 —t)pg is mixing DC.

Note that (5) implies that mixing DC measures are prevalent.
Now we can formulate our second proposition.

Proposition 4.7. If i is mizing DC with parameters v and T, then Q)
15 strongly maixing with power rate on any space of Holder continuous
functions H(T). More precisely, 3C < 0o, p > 0 such that

In fact, p can be chosen as close as we want to = from below.

Q"w—/wde < Cllell, 5. Vo € 3 (T).m € 2

Proof. The proof is exactly along the same line as that of Proposition
So we borrow the same notations: n, N, p,, r, from there. More-
over, given the other parameters 7,7 and «, we just need to consider
the case when n and N are sufficiently large.



74 A. CAIL P. DUARTE, AND S. KLEIN

The last two terms are again bounded by C' ||¢||, 5= for some constant

C > 0. The difference is on the first term. Now we have

n o Y
HQW_/WM/S > lalla®l Slelle Y pwl-gr)

o0 0<|kI<N 0<|k|<N

Write ¢ = p, + (¢ — pn), the same argument yields

Q" — /sode

S ‘

@+ [ oxan| 1@l [lrlan

oo

1

Using the inequality (1 —z)> < e~ 2 > 0, we have

Y \n Y \n _ny

We have to make % = N'=@. ¢ 5 thus we can take for example

9

N = ()7
such that

‘,_.

9o

ny 9
~n i, N-e N apior - e ()]

[=

1 _ 9%
m << n 107,
In the end we have

1
oy [ oxan| <cll,
0 n

with p = fo%. Adjusting the parameter 19—0 closer and closer to 1, we

getp 2. O

Remark 4.4. If we consider T¢,Vd > 1, then similar computation
yields the same estimate p * 2 as polynomial growth is nothing com-
pared with exponential decay! This shows that in any dimension d,
our result is strictly stronger than Bence Borda’s Theorem 4. That
is, for any discrete measure pu, we can get central limit theorem if we
assume o > T = g < ar > d where r € Z7" is the number of badly
approximated elements in the support of y, while he requires ar > 2d.

4.3. Statistical properties for mixed systems. Let p € Prob(T)
and let K : T — Prob(T), Ky = [ 0g1w,dpt(wo) be the Markov kernel.
Q : C°(T) — C°(T), Qe(0) = [ ¢(0+wo)du(wy) is the corresponding
Markov operator.
0 — 0+ wy— 60+ wy+ w — --- is the K-Markov chain where we
can denote Zy = 0,Z; =0 +wo + -+ +wj_1,7 € Z" in which each w;
is chosen independently w.r.t. pu.
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We have proved that if p is mixing DC, then (T, K, m,C%(T)) is a
strongly mixing Markov system with decaying rate r, = #,n e Zr

and p = 27.
By the abstract LDT Theorem [2.1] of CDK, we have

Corollary 4.8. Vo € C*(T), V0 € T and Ve > 0, we have

1
N { E[gp(@) +o @4 Fwn)] — /gpdm‘ > e} < e~

for some constant c(e) > 0.

By the abstract CLT Theorem [2.2] of Gordin-Livsic, we have

Corollary 4.9. If a > 7 so that p > 0 then ¥ € C*(T) with zero
mean, then if o(p) > 0 then

Snip

o\/n

Recall that we also have a slightly more general setup. Let ¥ := T,
on X X T consider the Markov kernel

K(woﬁ) = /6(w1,9+w0)du(w1>

and the corresponding Markov operator @ : C°(3 x T) — C°(X x T)

Q(wo, 0) = /w(w1,9+wo)du(w1>-

The K-Markov chain is
(wo,e) — (W1,9+WO) — (WQ,G_'_WO +W1) — e

Define IT : C°(X x T) — C%T), Ip(8) = [ w(wo,d)du(wo). It is
clear that Qy(wy, ) = (0 + wy). By induction,

Q"p(wo, 0) = Q" (Ip) (6 + wy).
Define the space C%*(X x T)) as follows:
CO*ExT)) ={peCTxT):vy(p) < oo}

L5 N(0,1).

where

/
Ug((ﬂ) ‘= sup sup ’W(WO, (9) So/(w07 0 )’ )
WoES, 046/ |0 — 6|
The corresponding a-norm is defined by |||, = ||l + v:(¢). Then
(2 x T,K,pux m,C%(X x T)) is a Markov system (simple exercise).
Since Q is strongly mixing on C*(T), then @ is strongly mixing on
C%*(3 x T) with the same decaying rate r, = nip,n € 7T, because
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[IC% (X x T) € C%(T). So we get LDT and (if & > 7) CLT. One can
formulate them mimicing the previous two corollaries.

Nevertheless, our ultimate goal is to prove LDT and CLT for the
mixed random-quasiperiodic system with Holder observables. Let Y :=

T, u € Prob(T), X := X% u? € Prob(X). Define
f:XXT—-XxT, f(w,0) = (ow,0+ wp).

The triple (X x T, f, uZ x m) is called a mixed random-quasiperiodic
System.
We say ¢ € Ho (X x T) if va(0) = vX () + v1(p) < oo where

"P(wv ‘9) B §0<wl7 0)| )

vy () = sup sup

0T w#w’ d<w7 w/)a
and ) o
UE(SO) ;= sup sup ’(,O(W, ) - S/OS'UJ )|
WEX 0L/ 6 — ¢

Note that v, is a semi-norm. Here w,w’ € X and
d(w,w/) = 2—min{|j|:wj7£w;}.

Remark 4.5. Note that in general this metric does not make (X, d) a
compact metric space unless p is finitely supported. The essential rea-
son is that this metric only shows the information of where two points
differ without telling how much they differ, which does not metrize
the product topology. However, results under this metric are stronger
because they also hold for functions which are not necessarily Holder
with respect to the standard compactified metric.

Then we can define the norm

el = vale) + el -
Then (Ho(X x T), ||-||,,) is a Banach space.
Consider the corresponding Markov chain on X x T
(w,0) = (0w, 0 +wo) = (0%w, 0 +wy +wy) — - -

This is not strongly mixing because it is determined. So we can not de-
rive LDT and CLT directly from the two abstract theorems by strongly
mixing condition. We have to find a way around.

To proceed, first we consider observables that are future independent

90( 7w717w07"') = 90( 7("}*170‘)0)7 Vwe X.

Namely, ¢ € H,(X~ x T) which is similarly defined as H,(X x T)
above. With an appropriate kernel K~ the corresponding Markov
kernel will be strongly mixing on H,(X~ x T) (essentially because
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(X=xT, K, u=™ xm,H,(X~ xT)) is an extension of (X x T, K, ju x
m, Hq (X x T)).

Moreover, If ¢ € H,(X x T), it turns out that it is cohomologous to

ap” € Hyo(X™ xT) in the sense that

p—p of=n—nof
for some n € H?(X x T) with some 3 < a. This will allow us to lift
the LDT estimates.

So let us first focus on the future independent mixed system. Let
=T, X =X = {w ={w}j<0:w; €T} endowed with the
distance d defined before. Denote by p~ the product measure.

The Markov kernel K~ on X~ x T is defined by

K(:J—,G) :/5(w_w1,9+w0)d:u’(w1)

and the corresponding Markov operator @~ on C*(X~ x T) is

@ olw0) = [ lmind + woduten)
The associated Markov chain is
(W™,0) = (W wy, 0 +wy) = (W wiws, 0 +wy +wy) — -

The space of a-Holder observables, denoted by H, (X~ x T), is de-
fined as

HalX™ % T) = {p € CUX™ X T) 1 valp) = vX " (¢) + vE(¥) < o0}

where
- ~,0) — p(w',0)]
v X ‘= sup su [P, A
« (90) HETII?W*#E’* d(w—jwl—)a
and
—.0) — -0
vaT(go) ;= sup sup [Pl "9)_ 9@/0’(:0 ’ )l

wmEX~ 040’
The norm is defined by [oll, := [lill.c + va(e). Moreover, (Ha(X~ x
T),|||,) is a Banach space.
For the sake of convenience, we recall the definition of Markov sys-
tems which was introduced previously in Section 2.

Definition 4.3. A Markov system is a tuple (M, K, i, €) where

(1) M is a compact metric space,
(2) K : M — Prob(M) is an SDS,
(3) p=K *xp:= [ K,du(z) € Prob(M) is a stationary measure,
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(4) &€ = (&,]]|l¢) is a Banach subspace of C°(M) such that action
of Qk on € and the inclusion & C L*(M) are both continuous.
In other words there are constants M; < oo and My < oo such
that [[¢ll, < M [lolle and [|Qplle < M. [[¢llg, for all p € €.

Remark 4.6. When & = C°(M) condition (4) follows from (1)-(3).

Proposition 4.10. (X~ x T, K, u N xm, Ho(X~ x T)) is a Markov
system.

Proof. Given ¢ € CY(X~ x T), it is indeed uniformly continuous due
to the compactness of X~ x T. Therefore, for any € > 0, we can take
d > 0 to be sufficiently small such that d((x,0),(y,n)) < ¢ implies

[o(,0) — @y, n)| <e
Therefore, if d((z, ), (y,n)) < §/4 we have

|<QK—90)(% ‘9) - (QK—SO)(% 77)|
<| / (5,8 + zo)dpu(s) — / (s, m + yo)dp(s)| < e,

which proves that Q- € CO(X~ x T) and K~ is an SDS.

Every measurable set V' C X~ X T can be approximated in measure
by countable unions of cylinders, i.e., measurable sets having the form
A; x B; with A; C X~ and B; C T. Direct computation shows

(K% (™ x m)) (4 x By) = /KI (A x B d(u™ x m)(z,0)

— [[ Kot x B @ (wyim(s)
_ / / Stesrany(As x Bi) du(s)d~ (z)dm(6)

= ([stnra @) ([ veatmran)

= (p " xm) (A; x By)

holds for any A; x B;. Thus it also holds for any measurable set V' C
X~ x T. This proves that =~ x m is a K~ -stationary measure.
Item (4) of Definition is straightforward to check and it holds

Our current goal is to prove that (X~ x T, K, u™ x m, Ho (X~ x
T)) is strongly mixing with rate -, p = 7. We showed that (E X
T, K, x m,C*(X x T)) is strongly mixing with rate —, p = 7. We
will prove that (X x T, K, x m,C%X x T)) is a contractlng factor
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of (X~ xT,K~, ™ xm,Hy(X~ x T)), which allows us to lift the
strongly mixing property from K to K.
We first introduce the definition of factor.

Definition 4.4. Given two Markov systems (M, K, i, €) and (M, K, ji, é),
the first is called a factor of the second if there exists a continuous pro-
jection 7 : M — M such that
(1) mp=pn, )
(2) Kﬂ(j) =m,K; forallz € M,
(3) there exists 5 : M — M continuous with 7 o5 = id,; such that
7€) € &€ and || ol < M |||z for some constant M; < oo
and all ¢ € g,
(4) 7(&) C € and || o ||z < My ||| for some constant M, < oo
and all p € €.

Factors have the following properties.

Proposition 4.11. Let (M, K, 11, &) be a factor of (M, K, f, é)

(1) ™ o Qx = Qp o 7", i.e. the following commutative diagram
holds

CONT) 255 ()

* *

CO (M) —— C°(M)
Qk
(2) The bounded linear map 7 : & — 7*(&) is an isomorphism onto
the closed linear subspace 7 (&) C €.

Proof. Since Ky = m K,

Qg o 7*0)(&) = / oo md; = / odK i) = (1 0 Queo)(7)

which gives item (1).

Let us prove item (2). By definition, 7*¢ = ¢ o 7 is a bounded
linear operator. Since 7 is surjective, then 7* is one to one. Thus
7w & — w*(&) is a linear bijection. Define the closed linear subspace
of €

Vi={pe:VayeMmnx)=n(y) = o) = py)}

The linearity is clear. For the closedness, assume that ¢, € V and
@n — ¢ pointwise in €. If w(z) = 7(y), then @, (Z) = $,(7). Therefore,

let n — oo we get ¢(z) = ¢(g) with @ € €, which shows that ¢ € V.
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Clearly 7*(&) C V. Conversely, given ¢ € V consider the function
Y = pon € & where n : M — M is defined in Definition 4.4, Since
m(x) = w(n(w(x))), by definition of V we have ¢(x) = p(n(n(z))) for
all x € M, which proves ¢ = ¢ o € 7*(€). Therefore, V = 7*(€) is
a closed linear subspace of &, thus also a Banach (sub) space with the
prescribed norm on e. Finally, by the Banach open mapping theorem
7* is an open map. Namely, the inverse map (7*)~! : 7*(&) — & is
continuous, thus also a bounded linear map. This proves that 7* is an
isomorphism. O

We introduce the notion of contracting factors.

Definition 4.5. We call (M, K, 11, &) a contracting factor of (M, K, i, £)
with contracting rate 7 if additionally we have the following: 3C > 0
such that Vo € €, 3¢, € €, n € N satisfying

|nlloe < N@lloe s 1¥nlle < CllQllE
and

|@e - 7y

< Clgls o)
for all n € N.
We have the following abstract theorem.

Theorem 4.5. Assume that (M, K, u, ) is strongly mizing with rate
r and that (M, K, p, &) is a contracting factor of (M, f(,ﬂ,é) with
contracting rate 7. Then (M,R,ﬂ,é) 18 strongly mizing with rate
r*(n) = max{r(3),7(3)}.

Proof. Fix ¢ € & and n € N. We may assume that n is even. Otherwise
since Q"¢ = Q" 1(Qp), we can work with Q@ instead of ¢. For this ¢
and 7, consider ¢z =: ¢ € € such that

[Vl < NPlloe > 11le S NGl
and

|@%e—v|_ S heler3).

Since ji is K-stationary, then

[ @edn= [sdnvien

As m i = u, we have
/ﬂ*l/}d/l = /1/Jdu.
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Then by an integration on both sides of the previous inequality, we
obtain

S . n
‘/sodu—/@bdu‘ S lelle 7(5)-
Using that (M, K, u, €) is strongly mixing with rate r, we have
n n ~
@20~ [vad] < ollrGp) 5 ol )

On the other hand, by the commutative diagram we have
Q' = Q.

Treating [ ¢du as a constant function, we have 7*( [ du) = [dp.
Thus

@i [ -
Finally, note that
@o- [ in=2o-Qt 0+ Q o)~ [ wdut [ vdu- [ pdp

Thus by triangle inequality,

n

et = ([ van| 51l

n

e~ [ i <19l (5 + 1+ 7(5)).

The result follows. O

[\]

We will apply this abstract result to the following setting: the factor
(M, K, i, &) will be (X x T, K, x m,C%(3 x T)). We have proved
that this system is strongly mixing with rate 7(n) = &,p > 0 pro-
vided that the measure p is mixing DC. Actually we proved this for
(T, K,m,C%(T)). On the other hand, the system (M, K, i, &) will be
(X= x T, K=, u™ x m, H, (X~ xT)).

Theorem 4.6. (X x T, K, u x m, C%*(X x T)) is a contracting factor
with exponential rate of (X=X T, K~ u™Nxm, Ho(X~xT)). Therefore,
the second is strongly mizing with rate nip

Proof. Definem : X~ xT — XxT, n(w™,0) = (wo, 0). Fixa € X, define
n: X XT— X~ xT, n(w,0) = (---aawy, d). It is straightforward to
check items (1)-(4) in Definition thus the first system is a factor of
the second. Let us prove that it is indeed a contracting factor.

Fix n € N, denote by H, (X~ x T) the functions in H, (X~ x T)
that only depend on last n random coordinates w_, 1, ,w_1,w and
6.
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If o€ Hypn(X™ xT), then

(@7)"p(w™,0) =/---/so(w‘wl---wn,0+wo+---+wn_1)du(wn)---du(w1)

only depends on (wy, 8), so (Q7)"¢(w™,0) € C¥*(Z x T).
Fix any ¢ € H, (X~ xT) and n € N, we construct ¢, € C**(X x T)
in the following. Let
@n(wia 9) = 90< © AW _nt1 WO, 9)

and denote i, (w™,0) = (- - aaw_p41 - wo, 0). So v, € Hon(X™ x T).
We have proved that the bounded linear map 7* : € — 7*(€) is an

isomorphism onto the closed linear subspace 7*(&) C &. So let 1, €
C%*(X x T) be such that

7T*% =yY,om= (Q_)ngon'
Then
(@) (¢) = tmom|
=@ 7)) = (@ )"¢ul|

<l — enll

= |o(w™,0) = ¢(in(w™,0))]
<vy (p)d (w7, (- aaw_pir - wo))”
<27 [l -

Let 0 =27 < 1, we conclude the proof by applying Theorem U

Fix any ¢ € Ho(X~ x T) and (w™,0) € X~ x T, consider the K~
Markov chain {Z, },>0 such that

ZO = ((JJ_,H), Zl = (w_wl’e_‘_wo)"“ ’
Zp= (W wi - wp0+wot -+ wna), e

Denote by S, = ©(Zo) + -+ + ©(Zn_1).
By the abstract LDT Theorem [2.1, we have

n

1
IP>(w‘76’) {‘ Snp — /X Tg@d,u’N X m‘ > g} < e—clen
- X

It implies that

1
P,vm {’—Sngp — / odp™ x m’ > e} < gelom,
n X—xT

On the other hand, consider the probability space (X x T, uZ x m).
Define f : XxT — X xT, f(w,0) = (ow,0+wp) and define 7 : X xT —
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X xT,m(w,0) = (w™,0). Then for every Zy = (w™,0) € X~ x T
chosen according to p™ x m, we have Z, = 7(w,6) with (w,0) =: Z,
chosen according to u% x m. In fact m,(u? x m) = u=™N x m.

Therefore, for every Z;,j > 0 which takes value in X~ x T, we have
Z; = m[f?(Zy)]. This shows that the previous inequality is equivalent
to the following:

n—1
1 :
pExm {(wﬁ) iy Y " por[f(w,0)] —/ edp N x m| > e} < emelon
j=0 X—xT

If a« > 7, we also get the central limit theorem by the abstact CLT
Theorem 2.11

We want to extend these statistical properties to observables that
also depend on the future. In fact, we want to obtain similar results
of the Markov system (X x T, f, uZ x m, H,(X x T)) (defined before
already) in which the Markov operator is exactly the Koopman opera-
tor: Qx(p) = o f and K is the dirac delta. This Koopman operator
is no longer strongly mixing.

Given p € C°(X x T) and (w,f) € X x T, the Birkhoff sums are

Snp(w,0) = p(w,0) + ¢ o f(w,0) + - +po f7H((w,0)).

Remark 4.7. We will identify H, (X~ x T) with the subspace of ob-
servables in H, (X x T) that are future independent. ¢ is called future
independent if p(z,0) = ¢(y,0) whenever 2= = y~.

The idea of proving LDT, CLT for the DDS (X x T, f) is to “reduce”
an observable ¢ € H,(X x T) to an observable ¢~ € Hz(X~ x T).
More precisely, we will prove the following proposition.

Proposition 4.12. V¢ € H,(X x T), there are o= € Hz(X~ x T)
and n € Hg(X x T) with 8 = § such that

p—p of=n—ncf (4.1)
Moreover, the map ¢ — ¢~ is a bounded linear operator, ||o~|; <
el

Let us assume for now that this proposition is valid and then we can
derive the LDT and CLT for (X x T, f).
Integrating both sides of the equation (4.1)) w.r.t. uZ x m, we have

/gpduzXm—/gp_OfduZXm:/nduzxm—/UOfd,uZ><m.
Since u” xm is f-invariant, the right hand side equals zero. This shows

/god,uzxm:/goofd,ume:/godume:/@d,uNxm.
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At the same time, equation (4.1]is equivalent to
p=w of+n—nolf
For LDT, taking the Birkhoff sums on both sides, we obtain
Snip = Sple~ o f)+n—mno ",
which further implies that

n—mno fr

1 1
— nso—/soduzxm=—5n(wOf)—/soduNxm+
n n n

1 _ L
zﬁSn(cp )—/go dup™N xm

as n is large. This shows the equivalence of the LDT estimates between
(X XT, f, u?xm, Ho(X xT)) and (X~ xT, K=, u= N xm, Hg(X ™ xT)).
In particular, we can lift the LDT estimates from the second system to
the first one.

For CLT (we need v > 37 such that 8/7 > 1), since we have

Snso—/soduz xm = Su(¢~ o f) —/so‘du‘N xm+1n—mno f",
dividing at both sides by oy/n with ¢ > 0 we have

Sup = [ odp” xm _ Sule” o f) = [¢rdp™" xm  n—mnof"
o\/n o\/n oyn
This shows the equivalence of the CLT between (X xT, f, uZxm, H, (X x
T)) and (X~ x T, K, u™ x m, Hs(X~ x T)). Namely,

Sulp™) = [ du™ xm 4
o/ — N(0,1),

if and only if

Spp — [odp®xm 4
1).
0\/5 —>N<07 )

Therefore, it remains to prove Proposition [£.12] Before that, let us
make some preparations regarding the concepts of continuous disinte-
gration and unstable holonomy.

Let m: X xT — X~ x T,7n(w,0) := (w™,0) be the standard pro-
jection. For w € X, we will write w = (w™;w™) where w™ € X~ and
wt e Xt .= 3N

Obviously, we have ,(uZ x m) = pu~

N s m.
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Definition 4.6. Let (M, ji) and (M, ;1) be measurable spaces. Assume
that M and M are compact metric spaces and 7 : M — M is continu-
ous with m, i = pu. A continuous disintegration of i over 7 is a family
of probability measures {fi, }ocas such that

(1) fiq € Prob(M) and fia(mH{a}) = 1,
(2) M > aw fi, € Prob(M) is continuous,
(3) Vo € CO(M),

/M wdji = /M ( /ﬂ e odjiy)dp(a).

For any (w™,0) € X~ x T, let
P 0) = 0y X ,uN+ X 0g € Prob(X x T).

Then clearly we have {P(wf,g)}(w779)e x-xT 1S a continuous disintegration
of P = p% x m along m. Moreover, for (w™,0) € X~ x T,

(w0} ={(w w0 wt e XT} = Wi (w,0)
are the local unstable sets of the partially hyperbolic dynamical system
f: X xXT— X xT. We clarify this in the following.
Let z,y € X with = = y~. Namely,
T = ( 71’7171‘0;1‘1;”')7 y: ( 737717:170;3/17”')-
Then

0'_11’:(“'7.17_1;.T07.T1,"‘>, o y:(...,x_l;l‘o,y17...)

which gives d(oc~ 'z, 07 y) < 271 If (z,0), (y,0) belong to the same
fiber W (x~,0), then 2~ =y~ and

fﬁl(xa 6) = (0-7113 0 + 1'71), fﬁl(ya 9) = (Jilya 0 + l’,l)
are still in the same fiber W (27,6 + z_;) with

do(f~H(x,0), fH(y,0)) <27
So f~! contracts the fibers. By induction,

do(f™"(z,0), f"(y,0)) <27

Backward contracting means they are unstable sets.
Let ¢ € Ho(X x T), we may define the unstable holonomies between
two points (z,0), (y,0) € W (z~,0) by

h((2,6), (y,0)) = Y _[e(f " (4, 0)) = (f " (x,0)] < valep 22‘"‘”

n=1
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Proposition 4.13. Given (x,0), (y,0), (z,0) on the same fiber, the fol-
lowing properties hold (the last one holds if f(y,0) and f(z,0) belong
to the same fiber):

(a) hg((x,0), (z,0)

(b) hg((,0), (y,0) —h“(( 0), (x,90)),
) 0)
)

(¢) hg((z,0), (2, he((2,0), (y,0)) + hg((y, 0), (2,0)),
(d) hi((2,0), (y,0)) + @(y,0) = p(x,0) + hi(f(2,0), f(y,0)).
In the following, we are going to prove Proposition which re-
duces p € H,(X x T) to
@~ € Hg(X™ xT) ={y € Hg(X xT):is future independent }

in the sense that ¢ and ¢~ o f are cohomologous through some n €
Hp(X x T). Moreover, the map ¢ — ¢~ is a bounded linear operator.

We will try to guess what n and the ¢~ should be. Actually n
determines ¢~ simply by

)
)
)
)

g of=nof-nty
which is equivalent to
g =n—nof+pofh.
This is still related to the cohomological equation.
So, let us recall some basic results on the cohomological equations.
Let (M, f) be a dynamical system. For an observable ¢ : M — R, the
goal is to find an np : M — R such that ¢ =n—no f. In fact, we want

more in the sense that if ¢ has some regularity, the solution n should
have the same or almost the same regularity.

Theorem 4.7 (Gottschalk-Hedlund). Let M be a compact metric space.
Assume f: M — M is a minimal homeomorphism and the observable
© : M — R is continuous. If {Snp(x)}n>0 is uniformly bounded in
n € N and x € M, then there is a continuous function n : M — R

satisfying p =n—mno f.

We give a hint of the proof here. Let

n(w) = sup Snp(z) = p(w) +sup S o f(z)) = pl(x) +n o f(z).
And then prove 7 is continuous.

Remark 4.8. Instead of the sup,,,, one can take any other “intrinsic
characteristics” of the sequence S,y that makes sense. For example,
infnzo, hmnzo etc.

Actually, there is a more subtle result.
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Theorem 4.8 (Livsic). Let f be a diffeomorphism on a Riemannian
manifold A C M which is compact, topological transitive and is a hy-
perbolic set. Let ¢ : A — R be a-Holder continuous. Assume that
whenever fP(x) = x we have Syp(x) = 0. Then 3! (up to an additive
constant) n : A — R a-Hélder continuous such that o =n—mno f.

We also give a rough idea of the proof. By topological transitivity,
Jrg € As.t. O (20) is dense in A. We define 7 on this orbit and extend
it to A by continuity:

n(f"(w0)) = Snp(xo) + n(x0)-

The thing left is to prove Holder continuity using hyperbolicity.
As was already mentioned, we are going to guess how we should
define i and ¢~ (which is future independent) such that
p—¢@ of=n—nof
which is equivalent to
pof =g =nofl-n. (4.2)
If we could solve the cohomological equation for o f~! (solution )

and for ¢~ (solution 1), then 7; — 72 would be a solution of (4.2)).
For ¢ o f=1, n; could be

m(a) ==Y pofofa)==> @ofa), acXxT
n=0 n=1

Then formally we have

poft=mof—m.
For ™, let us say
T =mmofT—m
where we do not know ¢~ but it is related to ¢ and it is future inde-
pendent.

The current question is how to get observables that are future inde-
pendent. Fix the future p™ € X, define

P:XXxT—XxT, Pw ;w8 = (w;p:0).

Then given any ¢ : X x T — R, ¢ o P is future independent.
Knowing this, let formally

ne(a) = —ngof_"oP(a), aec X xT.
n=1

Then
¢ i=moft—m=pofloP
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is future independent.
Let = n — ng,

Nw.0) =Y o f(Pw0)) —po f(w,0) = hi((w0), Pw,0)).

Note that (w, ), P(w,0) € W (w™,0) since they share the same past
x~ and have the same 0.

Remark 4.9. 0 "w and o "(w™,p") share the same coordinates at
least until n, thus d(c™"w, o " (w™,p")) < 2-™+D_ This implies

do(f " (w,0), " (P(w,0))) <2700 <27,

Now, let us show the well-definedness of n = n,. For any ¢ €
Ho(X x T), we have

(7 "(@,8)) — @(f " Pw,8)| < v () -2

which implies
oo

1700l < 02 () Y27 S vl ().

n=1
Define ¢~ s.t. the homological equation holds:
- =n,—mp0 [ +pofTh
We separate several steps.
Step 1. Note that ¢ — 7, is linear, which gives that ¢ — ¢~ is

linear also.
Step 2. ¢~ is indeed future independent.

v~ (a) = hi(a, P(a)) — hi(fH(a), P(fH(a) + @ o fH(a).
Note that
hi(a, P(a)) +¢o fH(a) = hi(fH(a), 7 (P(a)) + @ o f7'(P(a)).
This implies
v~ (a) = hy(Pf~(a), 7 (P(a))) + o [T (P(a)).

Since P fixes the future and P is in every term ( where Pf~!(a) does
not depend on non-negative coordinates which is even better), ¢~ is
future independent.

Step 3. [l¢7[l5 < ll¢ll,- This is equivalent to saying that ¢~ € Hp
and ¢ — ¢~ is bounded. Write again

<P_=77<p—77<p0f_1+900f_1.
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Since f~!is Lipschitz w.r.t. dp, it is enough to show that
Inells < llella
By definition,
16115 = noll o + 05 (1) + V5 (1.
But we already know |1, . < v (@) < ll¢ll,-

oo NV «

It is enough to show that respectively v3 (n,) < ll¢ll, and vg(n,) <
lell,,- We prove them one by one.

Rewrite
Z@of "o Pw,0) —¢o f Zgn w,0).

Fix z,y € X, assume that z; = y; until [j| < k, then d(z,y) =
2~ (k+1) < 27F We want to show that for any § € T and any k € N

[7(,0) = ng(y,0)] S 03 ()27,
which will imply v (n,) < vX(¢) < [l
By triangle inequality, we have (without loss of generality, assume k
is even, otherwise just take the integer part of k/2)

|77<P(x79) - 77<P(y’9)| S Z |gn(x70) - gn<y’0>|+z |gn<x79> - gn(y76)| :

n>g
We analyze the right hand side separately.
D 1n(@,0) = gy, )] <D lgn(@, 0+ lgn(y, 0)] S Y v ()27
n>§ n>f n>7 n>f
Since n > %, then 2n > k. Let 8 = 2, we have
04:3715:2715—1—77,5 > kB + np,

and then
27 < Q7R g7,
Hence
> 1gn(,0) = gu(y.0)] S vX ()27 Y27 < uX ()27,
n>% n>0

k
On the other hand, for > 2_; |g.(x,0) — gn(y,0)|, we know 2n < k,
2—(k+n) < d(U_n.’L',U_ny) < 2—(k—n)

and
2~ ) < do (" (@, 0), f " (y,0)) < 27
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Therefore,

lpo f(x,0) —po f(y,0)] < vl(p)2Fme
as ¢ € H,. The same estimate holds with P(z,6), P(y,0) instead of
(x,8), (y,0), which implies
(90 (2.0) = ga(y, 0)] S w3 (0)27

Hence, because of k > 2n thus (k — n)a > na, we have

k
2

k
2
D gnl@,0) = ga(y. 0)] S vX () Y 27 <X Z 9—kB . 9—nB

n>§ n=1
which again shows
Z |gn<x7 0) - gn(y7 0)| 5 Uc)u((gp)2_k6‘
n>§
Combining the previous estimate, we have
[15(,0) = n,(y, 0)] S var (9)27
for every # € T and every k € N, which further implies

v (M) S va () < lleell

Following the same strategy, we also have vj(n,) < |l¢ll,. More
precisely, fix any x € X and for 6,60’ € T, let N € Nsuch that |§ — 0| ~
27N so N =~ log leeq'

Like before, we have

D oo 0 <D v (@2 Sox(e) |0 -0°
n>N n>N
The same estimate holds for (x,6"). Therefore,
Y gn(@.0) = gula,0)] S0 (0) 10 = 01" < il 16 = 6"

n>N

On the other hand,
oo f (@, 0) —po f (@, 0)] < vilp) |0 -0
and the same estimate holds for P(x,0), P(x,0"). So we get
’gﬂ('xa 0) - gn(l', 9/)| S, UE(QD) ‘9 — 9/’04 .
This implies

/ / ]‘ e
> 10u(r.0) = gular 0] S 0T 10— 0" hom g < el 10— 0

0<n<N
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and thus
g (2,0) — 0o (2, 0)| < llgll, 10— 0" +llell, 10— 1 < gl 10— 6"

This shows v (n,) < [l¢ll,. Note that actually here 5 = a~ but we do
not make use of it.

To conclude, [[n,|l; < ll¢ll, for 8 = §. Thus n, € Hg(X x T) and
¢~ € Hp(X x T) which is future independent, namely ¢~ € Hg(X ™ x
T). Also ¢ — ¢~ is bounded.

This finishes the whole proof of Proposition [4.12]

Remark 4.10. For vg semi-norm, it almost has no loss since we can
choose § = a~. Note that our choice of § = 5 is not optimal. The
sharp estimate of 3 is left to the readers.

5. STATISTICAL PROPERTIES FOR CERTAIN DYNAMICAL SYSTEMS
VIA THE TRANSFER OPERATOR

By “certain dynamical systems” we mean (mostly) the simplest pos-
sible models, the objective being to illustrate the method.

Recall that we already obtain statistical properties like LDT and
CLT for certain systems via the Markov operator in the previous sec-
tion. We managed to sort of fit certain deterministic dynamical systems
(DDS) into the abstract probability scheme. For instance,

(1) Mixed random-quasiperiodic base dynamics.
(2) Random linear cocycles (locally constant).
Other models that sort of fit the scheme:

(3) Cocycles over a uniformly hyperbolic base dynamics and the
fiber dynamics are partially hyperbolic when projectivized (Duarte-
Klein-Poletti).

(4) Cocycles over mixed random-quasiperiodic base dynamics (Cai-
Duarte-Klein).

An important aspect in all of these models is the use of coding (sym-
bolic dynamics), the shift.

We will present a brief introduction to the use of the transfer operator
via the functional approach to the study of statistical properties for
certain DDS without coding.

Transfer operator encodes the action of a DS on mass densities of ini-
tial conditions. Let (M, B, m) be a Borel probability space where m is
the reference measure. Let f : M — M be continuous (non-invertible)
and non-singular in the sense that m(E) =0 = m(f~'(F)) =0,V E €
B.
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Example. (T,B,m) where m is the Lebesgue measure. f(x) =
2z mod 1 which is the doubling map.

Start with a density function h € L'(dm), consider the measure
dmy, = hdm and f,mj; = my o f~L.

Remark 5.1. Note that f.m;, < m. Because if m(E) = 0, then
m(f~1(E)) =0 and fumy(E) = mu(f~H(E)) = [;-1 () hdm = 0.

Then we naturally have the following definition.
Definition 5.1. £ : L'(dm) — L'(dm),

o df*mh
 dm

In fact, we have an equivalent characterization of L.

Lh

= Radon-Nikodym derivative of f,m; w.r.t. m.

Proposition 5.1. Given h € L'(dm), Lh is characterized by

YV e L>®(dm), /gp - Lhdm = /(gpo f)hdm

in the sense that Lh is the unique function in L'(dm) such that the
equation holds.

Proof.

ch =

This shows V¢ € L>(dm),

/gp-ﬁhdm: /(pdf*mh = /Spofdmh = /(soof)hdm-

For uniqueness, if ¢y, ¢, € L'(dm) s.t.

oo nham = [ ovidm = [ pusam, vy e =)

then by simple measure theory, ¥; = 15 m-a.e. 0

= Lhdm = df,my,.

Here are some properties of L.

Proposition 5.2. L is a linear operator. It is positive: if h > 0 then
Lh > 0. It is also bounded with norm 1 on L'(dm).

Proof. Linearity follows from the characterization. Positivity is also
clear because it is the Radon-Nikodym derivative of two positive mea-
sures.

We want to show that |Lh||, < ||h||,. For our purpose, we first show
that if h > 0, then ||Lh||, = ||A||;
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Fix h > 0, by the characterization, if ¢ = 1 is a constant function,
then

HL‘hle/Ehdm:/]l-L‘hdm:/(]lof)hdm:/hdm:HhHl.

In general, let h € L'(dm), then |h| € L'(dm) and |h] > 0. So by
linearity and positivity we have both Lh < L|h| and L(—h) < L]|h].
This implies |Lh| < L |h|. Hence

IChl, :/|£h|dm§ /L’|h|dm:/|h|dm: 1Al

This finished the proof. O
Example. Doubling map f(z) = 2z mod 1 on [0,1], h € L*(dm),
1 x x+1
h(z) == |h(=)+h .
eale) = 5[5+ 5 )

Proof. For ¢ € L>(dm),

/0 o(x)Lh(x)dx :/0 ©(2x mod 1)h(z)dx

= /02 ©(22)h(z)dx —1—[ ©(2x — 1)h(z)dx

2

= 5/0 sa(y)h(%)dw%/g w(y)h(yTH)dy

= [ [5 (v + 1) | av

Let us proceed with the smooth expanding maps of the torus.

Let f € C"(T,T) with > 2. Assume that |f'(z)] > A\ > 1,Vz € T.
As before, denote by m the Lebesgue measure. (Or more generally,
consider M a compact, connected Riemannian manifold, f : M — M
smooth. Voz € M,VYv € T,M, |Df.(v)] > A ||v]], As > 1).

By the derivative assumption, all z € T have the same (via inverse
function theorem, connectedness and compactness of T) finite number
n of preimages. Moreover, there is an open partition of T:

(L, L}st | JL=T
j=1

O

with each I; open, such that every
flg, + I; = T\{0}
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is a bijection. Let
95 = fI5, - T\{0} = ;.
For any test function ¢ € L*(dm),

/T oLhdm = /T (¢ o f)hdm

Here in the third equality we used the change of variables z = gj’l(y).
Then y = g;(z) and dy = }gﬁ(:v)‘ dr = md:p. Moreover, for every
z € T\{0}, f*z) = {g;(x) : j=1,--- ,n}. Hence, we have proved

that

o) = 3 frhio)
y:f(y)=z Y

We are interested in finding invariant measures for (T, f) where f :
T — T is a differentiable topological dynamical system.

We would like to see it as an MPDS, so we need to consider an f-
invariant Borel probability measure on T. There are plenty of such
measure, e.g. if f™(p) = p, then - Z?:OI dfi(p) is f-invariant.

Certainly, one type of interesting f-invariant measure is the measure
which is absolutely continuous with respect to the Lebesgue measure
m. The following proposition gives a characterization of a.c. measures.

Proposition 5.3. dug := hodm is an f-invariant measure < Lhy =
ho. In other words, the a.c. f-invariant measures correspond to the
eigenvector of L with eigenvalue 1.

Proof. po is f-invariant < [ @ o fdpg = [ pduo, V¢ € L>(dm). This
is equivalent to saying that

/ (p 0 fhodm = / whodm

/go - Lhodm = /gphgdm
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[,ho - ho.
U

Our goal is to study the spectral properties of the transfer operator
L. Tt turns out that the spectrum of £ on L' is

D={eC:|s|<1}.

For this purpose, let us introduce the Lasota-Yorke inequalities.

Recall that
h(y)
y:f(y)=x 7 (w)l

Moreover, f~'{z} = {y1,- . ym}, g; = f|;],1 : T\{0} — I; such that
gj(x) = y;. Since

we have

& hlg(a)
Eh) = 2 (g, ol

Assume that the derivative of h, b’ exists, we want to find (Lh)". Direct
computation shows that

f//
(f)?

1
)£l
provided h € L', I/ exists and b’ € L',

Recall that if ¢ € L', ¢ € L® = oy € L' and [[py||; < [lolly 19l -
As [f'(z)| > A\ > 1,Va € T, we have

(LRh) = LW ),

1 "
—|<—<1, sup =: D is called the distortion of f.

VA T | (f)?
In particular, for the doubling map f(z) = 2x mod 1, D = 0.
Let

WHN(T) := {h: T — R, h € L', I exists a.c.and h' € L'}

be the Sobolev space.
We already know that || Lgl|, < ||g]l,, so

1 1
)

- -
f/

: <XHIRL < IV
7l = IR0l < (171l

1

1

o
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Note that W'(T) > h — ||#/||; is a seminorm. Therefore, on W (T)
we consider the norm

1Bl = IRl +allBlly, a > 0.
The inequalities
LAl < By,
ICCR)lly < ARl + DA

are called Lasota-Yorke type inequalities. In particular, they show that

L is bounded on the Sobolev space Wh(T). If h € WhH1,

1£R[lyy = [I(LR)[l, + allLhll; (5.1)
< AR A (D + a) (IRl (5.2)
_ D+a
< >\* ! ||hH1,1 + T HhH1,1 (5-3)
< Al (5.4)

where C' = 2max { A1, 2Xe ],
Let us summarize: (W', -]l ;) < (L', ||-]l;) and £ is bounded on
both spaces. The Lasota-Yorke inequalities are

1£R], < [IAlly, ¥ h € L,
1LR[lyy < ATHIB g + C R -

By induction, Vn € N we have

£l < (17l
1£7Aly < Q)™ 17Ny + C7 (IR -

By a theorem of Hennion (Ionescu-Tulcea & Marinescu), it turns out
that £ is quasi-compact on W! with essential spectral radius less than
or equal to A\;! < 1.

Let us consider a particular situation when we do not need the force
of Hennion: A\;! + D < 1. For doubling map, A\, = 2 and D = 0 so it
is satisfied.

We take [|h|, , = ||F'[|, + a||h]|, where a > 0 such that

M4+ D+a<1.

Then £ will be a strict contraction on some subspace

V:{hewl’l:/hdm:O}.

Note that V is L-invariant.
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If h € V, then [ hdm = 0. Since h is continuous, then Iz, € T s.t.
h(xzo) = 0. Hence, if h € V,
/ W (y)dy
Zo

dx

bl = [ bl de = [
gjr(/zj|h'<y>|dy) o < [ Wl o<l

Then, for h € V,
||£h||1,1 < )‘*_1 ||h,||1 + (D +a) [|],,
<A+ D+a) I,
<\ D+a)[lhll,
<o ||h||1,1
where 0 < 1,V h € V. This shows the contracting of £ on V.

Theorem 5.1. There exists a unique absolutely continuous f-invariant
probability measure dp, = h.dm. Moreover, if h € WYl then 3o < 1

such that Vn € N
h — (/ hdm> h.

L"h — (/ hdm) D

Proof. Consider the dual operator L*, L*m = m <
(0, L7m) = (p,m),¥ p € C°(T)

<"

< Co™ [y, -

1,1 1,1

<‘C90’ m> = <90v m>7v90 S CO(T)

/&pdm = /gpdm,Vgp c C°(T)

which is true by the characterization of £. This shows that 1 is an
eigenvalue of £* which is equivalent to saying that 1 is an eigenvalue
of £ (in finite dimensional case this is true without any assumption
but here it is indeed true because of the quasi-compactness of L, we
will clarify this in detail later). Namely, Jh, € L' st. Lh, = h,,
which implies that h.dm is f-invariant. This shows the existence of
f-invariant absolutely continuous measure.

For the uniqueness, assume that the inequality in the theorem holds.
Then if du = pdm is another f-invariant probability measure, then
[ ¢dm =1 and Ly = . Moreover, by the inequality,

\ £~ ([ wdmn.

< Co"|hll,, =0
1,1
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as n — oo. This shows [¢ — h.||, ; — 0 which gives ¢ = h..
Finally, let us prove the inequality. Consider any h € WhH!, let

Nh = (/hdm) he, Rh:=L(h—Nh).

Note that h — N'h €V because

/h—./\/hdmz/hdm—/]\/hdm:().
Then

Lh=Rh+Nh=Rh+ (/hdm)/lh* — Rh+ (/hdm)h*.
Since RoN =N oR =0, then £L =R &N where N2 =N. So
L'h =R+ (/ hdm)h,.

Hence

R = L"h — (/ hdm)h,.

o (h _ (/ hdm)h*>
As h — ([ hdm)h, € V, we have

‘ L'h— (/ hdm)h, h— (/ hdm)h,

This finishes the proof. O

It follows that

' £ — ( / hdm)h.

— R, = \

1,1 1,1

<"
1,1

Remark 5.2. £"1 — h, as n — oo.

5.1. Hennion’s Theorem. In the following, we present the theorem
of Hennion as well as the proof of it.

Theorem 5.2 (Hennion 1993). Let B C B,, be two Banach spaces, |||
and ||-||,, being the respective norm, satisfying |||, < |||l . In addition,
let T : B — B be a linear operator s.t. Am,C,0 > 0,0 < m andng € N
s.t. T™ : B — B, is a compact operator and for eachn € N and v € B,

||Tnv||w S Cmn ||U||w7
[T"0]| < CO" [|vf| + Cm™ [Jv]],, -

Then the spectral radius of T is bounded by m and its essential spectral
radius 1s bounded by 6.



STATISTICAL PROPERTIES FOR CERTAIN DYNAMICAL SYSTEMS 99

Before the proof, there are various lemmas and definitions to be
given.

Denote by L(B,B) the set of bounded linear operators from B to
itself. For each A € L(B,B), we denote by R(A) the range of A and
by N(A) the kernal of A.

Definition 5.2. We say that an operator P € L(B,B) is a projection
if and only if P? = P.

Lemma 5.4. If P is a projection, then B =N (P) ® R(P).

Definition 5.3. An operator K € L(B,B) is compact if and only if
for any bounded set D, the closure of k(D) is compact.

Definition 5.4. Given A € L(B,B), we define the resolvent set of A
as

p(A) :={z € C: 21 — Ahas bounded inverse} ,
and the spectrum of A as o(A) = C\p(A). For simplicity, in the
following we omit “1”.

We define the spectral radius of A as
: gt
r(4) = lim A"

Definition 5.5 (Essential spectrum). Let T' € £(B, B), the essential
spectrum of T, denoted by o.ss(7) is the set of A € o(T') such that at
least one of the following conditions holds:

(1) R(A—1T) is not closed.

(2) Ups>1N (A = T)™ is infinite dimensional.

(3) Ais a limit point of o(T)\{\}.

Lemma 5.5. Let B be a Banach space, V C B a proper closed sub-
space. Then for every € > 0, there exists vo € B with ||xo|| = 1 and
dist(zg,V) > 1 —e.

Definition 5.6 (Proper). A continuous map F': U C X — Y between
topological spaces is called proper if F~!(M) is compact whenever M C
Y is compact.

Theorem 5.3. Fvery locally compact space X has finite dimension.

Lemma 5.6. Let X and Y be Banach spaces and S € L(X,Y). If S
restricted to closed bounded set is proper, then N(S) is finite dimen-
stonal and R 1s closed.

A more detailed version of this lemma with proof will appear later.
let B be a Banach space and A be a bounded set of B.
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Definition 5.7 (Measure of noncompactness). The measure of non-
compactness of A C B is defined as the infimum of d > 0 such that
there exists a finite number of sets Sy, - - , S, with diam(S;) < d,Vi =
1,---,nand A C U,S;. Moreover, we denote the measure of noncom-

Y

pactness of A by r(A).

Definition 5.8 (Ball measure of noncompactness). The ball measure
of noncompactness, 7(A) is the infimum of d > 0 such that there exists
a finite number of balls By, - - - , B,, with centers in B with radius d and
AcCUl,B;.

Remark 5.3. It is obvious that r(A) < 7(A).

Definition 5.9 (K -set(-ball) contraction). Let By and By be Banach
spaces. We say that T € L(By, By) is a K-set contraction if VA C By
bounded,

T'Ba (T(A)) < Krg, (A)
T is called a K-set-ball contraction if

75,(T(A)) < K7, (A).

We define
r(T) =inf {K > 0:T'is a K-set contraction} .
7(T) =inf {K > 0: Tis a K-set-ball contraction} .

Lemma 5.7. We have the following properties.
(1) If A C B, then A is compact iff 7(A) = 0. Also, A is compact
iff r(A) = 0.
(2) T € L(B,B) is compact iff 7(T) = 0. Also, T is compact iff
r(T) = 0.
(3) r(T) < [T
(4) For bounded sets A, B € B, we have
r(A+ B) <r(A) +r(B)

and
7(A+ B) <7(A) + 7(B).

Lemma 5.8 (B3, Liverani). Let X,Y be Banach spaces, S € L(X,Y),
then the following are equivalent:

(1) For any B C X closed and bounded, S|g is proper (i.e. K CY
compact implies that S~ (K)N B C X is compact).

(2) If {x,} C X is bounded and Sx, — vy, then 3{x, } which
converges.

(3) N(S) = ker(S) is finite dimensional and R(S) = range(S) is

closed.



STATISTICAL PROPERTIES FOR CERTAIN DYNAMICAL SYSTEMS 101

Proof. We give the proof in the following order.

(1) = (2).

Sz, — y implies that A := {Sxz,:n > 1} U{y} C Y is compact,
which by properness further implies that {x,} C S™!'(A) N B is com-
pact. Thus 3{z,, } which converges.

(2) = (1).

Fix B C X closed and bounded, K C Y compact. Take any {z,} C
S Y K)N B C X, then {x,} is bounded. Note also that {Sz,} C K
which is compact, thus 35z, — y. Then by (2), 3{z,, } which
converges. This proves S™!'(K) N B C X is compact, hence (1) holds.

(3) = (2).

If F' C X is finite dimensional, then there exists a closed complement
C of Fin X such that X = F & C (because if P is the projection on
F', then C' = ker P). This is only valued when F' has finite dimension.

By assumption, A/(S) having finite dimensional implies that 3C
closed s.t. X = N(S) @ C. R(S) is closed in Y which is a Banach
space, so R(S) is also Banach with the induced norm from Y. Also, C
is Banach as it is closed. Then

Sle: C — R(S)

is bounded linear and surjective. By Banach open mapping theorem,
S|;! is continuous and bounded.
Let {z,} C X be bounded and Sz,, — y. Write

Tp=ap+cn, a, €N(S), c, €C.

Then
Sz, =0+ Sc, =y € R(S),
which implies ¢, — S~y and ¢, is bounded.
On the other hand,
Qp = Ty — Cp
with z,, bounded and ¢, bounded. So q,, is also bounded Vn € N.

Since {a,} C N(S) is finite dimensional, then 3{a,, } which converges
to a € N(S). Therefore, we have

X, —a+S""y.

This proves (2).

(2) = (3).

N(S) is a closed linear subspace of X so it is Banach. We are
going to show that AV(S) is locally compact thus is finite dimensional.
Note that A(S) being locally compact is equivalent to saying that
V{z,} bounded in N(S), it has a convergent subsequence. Note that



102 A. CAIL, P. DUARTE, AND S. KLEIN

z, € N(S) means Sz, = 0 — 0. Thus by hypothesis, Jx,,, converges.
We conclude that AV(S) is finite dimensional.

Since N (S) is finite dimensional, 3C C X closed s.t. X = N(S)®C.
We want to show that R(.S) is closed.

Take {Sz,} C R(S) such that Sz, — y, we want to prove y = Sx
for some = € X, which implies closedness of R(S). Like before, let

Tp = Qp + Cp,

then

Sz, =0+ Sc, = v.
We claim that {c,} is bounded. By hypothesis, 3¢,, — c¢. Thus
Sey, — Sc and also Sc,, = Sx,, — y. By uniqueness of limit, y = Sc
for some c € C' C X.

Therefore, it remains to prove the claim. To prove {c,} is bounded,
assume by contradiction that {¢,} is unbounded. Then up to passing
to a subsequence,

lleall = 00, ¢, € C.

Let
Cn
2y = —=€C, |z, =1
el
Then
Scy,
Sz, = ¢ 0
el

since S¢, — y and ||¢,|| — 0.

By hypothesis, 3{z,, } coverges to z € X which implies ||z]| = 1.
But Sz, — Sz with Sz, — 0, so Sz = 0. This shows that z €
N(S)N C = {0} which gives z = 0. This contradicts to ||z]| = 1.

This finishes the whole proof. U

Denote 7. = sup{|A| : A € 0ess(T)}. We have the following lemma.
Lemma 5.9. Let X be a Banach space and T' € L(X, X). Define

r! = inf (F(T™))" .

n>0

Then lim,, ., (f(T”))% and lim,, ., (r(T"))% exist and are equal to 1.
Furthermore, if || > 1., then N(X —T)" is finite dimensional for any
r>1and R(A—T) is closed.

Proof. We will prove that

lim sup (f(T"))% <.

n—oo
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Take any € > 0 and choose m € N s.t.
(F(T™)™ < 1)+
We take n large enough s.t. n =pm+qwith 0 <¢<m—1. Asa
fact, for S € L(X, X) and A C X, we have
7(S(A)) < 7(S)F(A).
For S,T € L(X, X),
F(ST(A)) < F(S)H(T)F(A)

and
#(ST) < #(S)T

which is multiplicative. Hence
(F(T™)* = 7 (TP )
< HT™)FEHT)
(rl+e) W 7+ (T)n.

Take limsup in n on both sides, it implies

IN

lim sup (f(T”))% <7, =inf <liminf < limsup.
n—00 n n n
1

Thus lim,, o (F(7T™))» = r.. Note that r(T") < 7(T') for any 7', arguing
similarly for 7(7T") we get the first part of the lemma.
For the second part, choose A s.t. |A] > 7/ and n such that

(F(T7))" <Al
Let T7 := ﬁT, then 7(77") = ‘—/1\| By Lemma , we will conclude the
proof if we prove the following lemma

Lemma 5.10. If for some n € N,#(T") < 1, then (1 —T')" restricted
to closed and bounded sets is proper for any r > 1.

Proof. Let A C X be closed and bounded and M C X be compact.
Define
My={zecA:(1-T)xeM}.
We claim that M; is compact which implies 7(M;) = 0.
For x € My, 3m € M st. m=x —Tx < x = Tx + m. Thus
v =T(Tx+m)+m="Tx+Tm+m.

By iteration, we get
n—1
r=T"z+ ZTi(m).

1=0
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As T is bounded thus continuous, m, := 3.1 T%(m) is compact. We
know that
M, ¢ T"(M,) + M,,
which implies
r(My) < 7(T™(My)) + 7(M,) = 7(T™(My)).
By submultiplicativity, we know
F(My) < F(T(My)) < F(T7)F(My).
This implies that #(M;) = 0 as 7(7T™) < 1, thus M; is compact. This
proves that (1 —T') is proper. Suppose that (1 —7)"~! is proper. Let
M be compact, then (1 — T)~~Y(M) is compact. Since
(1 -7)"(M)=(1-T)""1-1)"" (M),

then (1 —T)~"(M) is compact thus (1 —T')" is proper for any r > 1. [

The whole proof is thus finished. U

The following lemma implies that 7/ > 7.

Lemma 5.11. If |\o| > 77, then X\ is not a limit point of o(T)\{\o}.

Proof. We claim that there exists a neighborhood of B of Ag, such that
VA # X, A € B, we have A € p(T'). Then this will show that A\ is not
a limit point of o(T)\{ o}

If Ao € p(T), this is trivial. Now let us assume that Ay € o(7"). We
are going to show that either

Suppose both are equal to zero, we denote D := R(M\g — T'). Then
(A —T)': D — X exists. Moreover, using the previous lemma, D is
closed.

Assume D # X, then D is a closed proper subspace. Hence, Ju € X
with [lu]| = 1 and |lu —w| > i, Vw € D. Let V := span{u, D}. If
v eV, then

v=au+w, a€R weDl.

Define a linear functional [ : v — R s.t. I[(v) = a. Then
_ 1
[oll = llaw+w] = laf [lu = (=a" w) || = |a| - 5,

which implies

()] < 2|lvll = [[p(v)]] -
Applying Hahn-Banach, [ can be extended to the whole X and since
l(u)=1+#£0,1#0.
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Let v € X, we have
()\0 — T*)l(?}) = l(()\o — T)U) = 07

This contradicts to N (A\g—T*) = 0. So D = X and (M\g—T) is invertible
on X. Thus (A\g — T)~! is a bounded operator. This shows \ ¢ o(T)
which contradicts to A\g € o(T'). Therefore, either N'(\g — T) # 0 or
NN —T*) #0.

Now suppose that 3{\,}n0 C o(T)\{Ao} which accumulates to
Xo. Then there are either infinitely many @, € N (an —T) or I, €
N (A, —T)* by the claim above.

Thus, given € > 0, dn s.t. Vn > n

:\n—/\o‘ <€|/\0|.

Moreover, let Mg be the subspace spanned by the eigenvectors
ﬂfw ﬁﬁ+17 e 7’&'ﬁ,+K
and denote ug ‘= Up1x, A\x ‘= A\t k-
Since uq,--- ,ug are linearly independent, each Mg _; is a proper

closed subspace of M. Then Jvg € Mg with ||Jvg| = 1s.t. d(vg, Mk_1) >
1 —e. In addition,

Vg = QUK + Wi, Wi € Mg_1.
Take S > K € N, r € N| then
|IT"vs — T k|| = |IT" (asus) + TTws — T vk ||
= |lagAsus + T"ws — T vk ||
= |Ng| [|lvs — (ws = Ag" T ws + A" T" v ) ||
> |Xs[ (L =€)
= [(As = Ao+ Ao)"[ (1 —¢)
/\5)\—0 Ao (1— 0
> [ No|” (1 — ).

This shows that T{||v|| < 1} can not be covered by a finite number
of sets of diameter I [\o|" (1 — €)™
As € is arbitrary, we get that

- |)\0|r 1 —|—

HTT) >r(T") > = ||

=~ =

In the second case, we get

F(T)) 2 r((T7)") = 7 1l

I
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Note that r(7*) < 7(T), so in either case, we have 7(T") > X |\o[".
Since /= inf,, (F(T™))% > |Ao|, this contradicts |Ao| > 7. Then A
is not a limit point of o(7T)\{ Ao}
This finishes the proof. O

Finally, we can give the proof of Theorem [5.2]

Proof of Hennion’s theorem. Recall that our goal is to prove r(£) < m
and r, < 6 with # < m. By assumption, we have

£ < CO™ [Jo]| + Cm™ [|ufl, < 2Cm™ [[v]],, -

Thus 7(£) = lim,, 0 ||£"||% < m which easily gives the first result we
want.

Now, let us prove r, < 6.

Define B; := {v € B : ||v|| < 1}. Note that

re < vl =inf(F(L")" < lim (F(L"))x.

n—oo

We claim £"B; can be covered by a finite number of balls with radius
less than C'™ which will finish the proof.

Without loss of generality, we prove for ng = 1. Other cases are the
same. L : B — B, is a compact operator, so LB is relatively compact.
Let

B(v) ={we B, : |lv-w|, <e€}.

Then obviously {B.(v)}yecn, covers LB;. By relative compactness,
there exist a finite number of sets

{V(Ui)}z‘]\il i={Be(v;) N ﬁBl}i\Ll

that cover £B;.

Now we will show that diam(L™(V(v;))) < CO" for any n € N.
Let v € LBy, v = L(w),w € B;. Moreover, let v; = L(w;). Direct
computation shows

L7 (w) — L™(w;)|| = [|£7 (v — )|
<CO o — vl FCm" v — vill,,
< CO([Joll + |lvill) + Cm™ e
S0

if e = %. This shows that £"B; can be covered by a finite number
of balls with radius less than C'6™.
The proof is thus finished. O
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5.2. The spectral property. Let X,Y be Banach spaces and T :
X — Y be a bounded linear operator. The normed spaces are respec-
tively (X, ) and (¥ ]-]l,).

Let us recall the definition of compact operators.

Definition 5.10. T is a compact operator if T(B) C Y is relatively
compact whenever B is bounded. Equaivalently, V{x,},>0 C X a
||| x-bounded sequence, {T'x,},>0 C Y has a ||-||,-convergent subse-
quence.

The following are some facts about compact operators.

(1) If z € o(T"), 2 # 0, then z is an eigenvalue of finite multiplicity.

(2) Vr > 0, the set of z € o(T) with |z| > r is finite. So the
spectrum of a compact operator on an infinite dimensional space
consists of “0, some other eigenvalues of finite multiplicity with
modulus less than 7(7'), and a finite number of eigenvalues of
finite multiplicity with modulus r(7")”.

(3) If z € o(T) and z # 0, then N (2 — T)" stabilizes, i.e. In > 1,
ker(z — T)" = ker(z — T')" for all » > n. Moreover, if Ing > 1
such that T is compact, then this item still holds for T

Theorem 5.4 (Riesz operator). Let T : X — X be a bounded linear
operator and denote by o(T') its spectrum. If T C o(T) is an isolated
part of the spectrum in the sense that T and 7" = o(T)\7 are both closed.
Then there is a projection P, : X — X, P? = P, which commutes with
T, P.oT =To P, (same for P.). If we put M = SP,, L = ker P,,
then X = M & L is a T-invariant decomposition and o(T|py) = T,
o(T|,) =71

The proof uses holomorphic functional calculus. Moreover, P+ P, =
id, P, P, = P.P. = 0.

Definition 5.11 (Quasi-compact operator). 7' : X — X is called
quasi-compact if there is a T-invariant decomposition X = F & H
such that »(T|y) < r(T), dimF' < oo and each eigenvalue of T'|p
has modulus equal to r(7"). Moreover, if dim F' = 1, then T is called
quasi-compact and simple.

A quasi-compact operator has the spectral gap property. In fact,
using Riesz projectors, they are equivalent.

Definition 5.12 (Discrete and essential spectrum, Browder). Let T :
X — X be a bounded linear operator. We say A € o4(T) if

(1) A is an isolated point of o (7).

(2) The Riesz projector Py has finite rank.
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Clearly, the discrete spectrum oy is at most countable. In addition, the
essential spectrum is oess(7) = o(T)\oa(T).

We denote 7.s5(T) = sup {|A| : A € 0ess(T)}-

Theorem 5.5 (Ionescu-Tulcea and Marinescu, Hennion). Let X C Y
be two Banach spaces with (X, ||||x), Y, Illy) and |||ly < Il Let
T : X — X be a bounded linear operator. Assume that for some
o0 € (0,1), C < 00, ng €N, the following hold:

(1) T (X, |l x) = (Y, |lly) is compact.

(2)VneNVreX,

[Ty < Cllzlly -
(3)VneNVreX,
[T"z||x < Cog [lxflx + C =]y -

Then r(T) <1 and ress(T) < 0p.
Corollary 5.12. Under the assumptions of this theorem, T is quasi-
compact. In fact, 3oy € (0¢,1) s.t. o(T) consists of a finite number

of eigenvalues of modulus 1: namely 7, and the other part 7" where
T(T‘kerpT) < 01.

The complication of having o instead of o is because we only know
T is compact instead of T'. Let

o =max {og, |\ A< 1,A € 04(T)}.
Using Riesz projectors, we have moreover
[=P +Py=) €’Pu+ Py
A
where F C [0, 27) is finite. Apply T on both sides, we get
T = Z €i€TP6i9 + TP,
a
and we denote T'P,ie = Ily and TP, = S. Namely,
T = Z 6i9H9 + S
0cF
where r(S) < o < 1, 12 = ¥Ily, [ylly = 0 if 0" # 0 and 1,S =
SIly = 0,V 60 € F. Therefore, for any n € NT,
=) "y + S".
a
So HT” — D oerF ei"(’HgHX —0asr(9) <1
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Let us go back to talk about the expanding maps of the circle. We
will prove that its transfer operator is quasi-compact using Ionescu-
Tulcea and Marinescu or Hennion’s theorem. Recall that we have (T, f)
where f € C? with |f'(y)] > A\ > 1,Vy € T. We define the transfer
operator on L'(T,dm) to itself by
df x1p

dm
where dmy;, = hdm. It turns out that

ch=3 )

/
e W)

and Lh is uniquely determined by
/(p - (Lh)dm = /(gpo f)-hdm, ¥ L*(dm).

By the properties of a transfer operator, £ is linear, bounded (|| Lh]|, <
|||, thus [[£"A]|, < ||h]|; so (2) of lonescu-Tulcea and Marinescu or
Hennion is satisfied) and positive (if A~ > 0 then £h > 0). Moreover,
by linearity and positivity we have that £ |h| > |Lh|.

We consider the Sobolev space:

WHNT) := {h: T — R, h € L', I exists a.c.and h' € L'}

which equals the space of absolutely continuous functions on T. More
precisely, h is absolutely continuous on T means Ve > 0, 30 > 0 s.t. if

Sow (b —a;) <6,a;,b; € T,n e NT, then D7 | |h(b;) — h(a)| <e.
Clearly, WH(T) is a linear space endowed with the Sobolev norm

1Al y = [P0y + 1A -

This is a Banach space (actually a Banach algebra) and W' (T) —
C°(T) is a bounded inclusion.
Remember that we have the Lasota-Yorke inequality:

[£A[ < Rl
ICLRY Ny < AZHIR Nl + D IR -

Thus £ is a bounded linear operator on W%(T). By induction, (3)
of Ionescu-Tulcea and Marinescu or Hennion is also satisfied. So it
remains to check that

L WD), ) = (L5 (1)

is compact. For this purpose, we just need to prove that if {h,},>1 C
WHE(T) satisfies ||h,l,; < C,Vn > 1, then {Lhy},>1 contains a con-
vergent subsequence in L'(T,dm).

Lh =
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We will use Frechét-Kolmogorov theorem which is an LP version of
Arzela-Ascoli theorem, saying that “uniform boundedness” and “equicon-
tinuity” in LP(Q2) implies pre-compactness in LP(€2). For us, p = 1 and
Q=T.

Definition 5.13 (Uniform boundedness). We say {¢,, }n>1 C L'(T, dm)
is uniformly bounded if there exists some C' < oo such that ||¢, |, < C
for all n > 1.

Definition 5.14 (Equicontinuity). We say {¢,}n,>1 C L'(T,dm) is
equicontinuous if

lon(-+1) —n(-)|[[; =0 as t—=0
uniformly in n. More precisely, Ve > 0,36 > 0 s.t. if [t| <, then
[on(- +1) —en()ll; <€ Vn=>1.

For the sequence {h,}, we define ¢, := Lh,,n > 1, then by Lasota-
Yorke and the assumption we have

1£hnlly < Nhnlly < NAnllyy < C.

S0 {¢n }n>1 is uniformly bounded. Thus it remains to check its equicon-
tinuity. Note that it is sufficient to prove the following:

[1Lhn(- +1) = Lha ()]l S 12, V0 = 1.

By the Newton-Leibniz formula (Fundamental theorem of calculus),
we have

Lho(z + 1) — Lhy(x) = /  ehaY()ds.

This implies

e+ = th(l < [ [ Ik o) dso
S/O /0 [(Lhy) (u+ )] - Lo 4 (u)dudz

— [ 1ehay - Lo
<Cll.

Here we have used Fubini’s theorem to exchange the order of the inte-
gral and also applied the second inequality in Lasota-Yorke to ensure
the final step.

To conclude, applying Frechét-Kolmogorov theorem, we obtain that
L is a compact operator. Thus all conditions of Ionescu-Tulcea and
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Marinescu or Hennion’s theorem are satisfied, so we get that £ is quasi-
compact.

In the following, our remaining goal is to prove that £ is not only just
quasi-compact, but also simple with 1 as the only peripheral eigenvalue.
We formulate this result as a theorem.

Theorem 5.6. The transfer operator L of the expanding maps of the
circle 1s quasi-compact and simple.

Proof. Tt is left to prove that L is simple. Let us first show that 1 is
an eigenvalue of £. Indeed, by the same argument as before,

L'm=m & (p,L'm) = (p,m), Vo € C°T).

& (Lo,m) = (p,m @/s@dm /s@dm

which is true. Thus 1 is an eigenvalue of £*, in particular 1 € o(L*).
Since the spectrum of a bounded linear operator and its adjoint on a
Banach space are the same, 1 € o(£). As L is quasi-compact (actually
compact from (W', |||l ;) to (L' []-]|;)), 1 is an eigenvalue of finite
multiplicity. So 0 € F C [0,27) which is finite. Recall that we have

£ = Z ew/Hg/ —I— S,
0'cF
and
= Z eiWHg/ + Sk, VkeNT.
0'eF
—ik0

Fix any 6 € T, multiply e on both sides and we get

o—ikb ok _ Z ¢HO=OT],, 4+ =0 Gk
0eF
Take £ 377 | on both sides and let n — oo, we get

n

1 —ik0 pk
nlggoﬁkz:;e L =1y, VO € F.

This is because when n — oo,

1 o~
— Z e MSk 0
n

k=1

and

SRS

0, otherwise.

k=10'eF
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In particular, IIy = lim,,_, % ZZ:1 L¥ and it is a positive operator
because L is positive.

Note that for h > 0, we have Lh > 0 as L is positive. Let g := Ily1
which is continuous. Then we claim that £Lg = g, g > 0 and [ gdm = 1.

By the expression of £, Lg = ¢ is trivial. Therefore, if du = gdm
then 1 is f-invariant by equivalence. [ gdm =1 is also obvious by the
expression of Ily and Lebesgue’s dominated convergence theorem. By
positivity of IIy, we know that g = Iyl > 0, so it remains to prove
that g is indeed strictly positive.

If g(x) = 0 for some z € T, then since Lg = g, we have

1
Lg(x)= > ——9(y)=0.
verTim W)

Sog(y) =0,YVy € f~'{z}. By induction, g(y) = 0,Vy € f~"{x} for all
n > 1. But the set of preimages of any point is dense in T, because for
any interval I C T, 3n € N such that f"(I) =T > z, then f™"{z} € I
for this n.

Moreover, since g is continuous then g = 0 which is a contradiction
to [ gdm = 1. Therefore, g(z) > 0,Vz € T

Remark 5.4. We can conclude that if ¢ > 0 is continuous, Ly = ¢
and ¢(z¢) = 0 for some zy € T, then ¢ = 0.

Next, we are going to prove that 1 is the only peripheral eigenvalue
and L is simple. Let h be an eigenvector of £ with eigenvalue ¥, 0 € F.
Namely,

Lh=¢e"h < Tyh = “h.

We need to prove that § = 0 and h = A\g for some \ € C.
Since we have |Ch| < L|h| and |Lh| = |€"h| = |h|, then |h| < Lh.
By induction, |h| < £*|h],Vk > 1. This implies

1n
hl <= LFIR.Vn>1.
||_nZ |h|,¥Vn >

k=1

Let n — oo, we get |h| < IIy|h|. Using dominated convergence theo-
rem, we have
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/H0|h|—|h|dm:/no|h|dm—/yh|dm

R "
:,}E{}og;/ﬁ |h|dm—/|h|dm

:/|h|dm—/|h|dm:0

Thus Iy |h| = |h| because they are continuous. Since Ily is perpendic-
ular to each other and also to S, this shows that £|h| = |h|.
Now we consider

h h
b= minu = M for some zy € T.
9  9(xo)

Then |h| — Bg has a zero for xy and it is non-negative. So
L(|h] = Bg) = L|h] = Ly = || = Bg.

By the remark before, we get |h| — 3g = 0 thus |h| = 8g. So h = €™ f3g
where ¢ € C|0, 27).
We will show that ¢ — ¢ o f = 6. This would imply

0:/g0—<pofdp:9

which gives § = 0 and ¢ = @ o f. Using the expanding condition again,
@ is constant. Thus h = Ag for some \ € C.
Let us show that ¢ — o f = 0. By Lh = €¢?h and h = €39 we
have
Lh = BL(eg) & ¢’e?Bg = BL(¥g)
which shows
E(eiwg) _ 6i(9+ap)g_

By direct computation, we have

, 1.
L (e'v=%2f=0 ) (z) = —— )= @)=0) gy
( ) f%:x /()]

— ¢~ ile@)+9) Z /1 eiso(y)g(y)
o 1 Wl

— e~ ip(2)+0) .ﬁ(eiw)(x)
— e~ He@)+0) | Silp(x)+0)

= g(z).

g9(z)
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Therefore, we have
L ((ei(<ﬁ—w0f—9) _ 1)9) =0,

which implies

/£ ((ei(“”_‘pOf_e) — 1)9) dm = /(ei(“’_”of_e) —1)gdm = 0.

Taking the real part, we have
[t costo o0 7~ 0)lgam = 0

where g > 0 and 1 —cos(¢ —po f—6) > 0. Using the previous remark,
we get cos(p — p o f —6) = 1 which implies ¢ — po f — 0 € 2nZ.
Since it is continuous on [0, 27), we get ¢ — @ o f — 0 = 2wk for some
k € Z. Integrating w.r.t. p, we have 0 — 0 = 27k. As 0 € [0,2n),
Ek=0=0=0=>¢p—pof=0.

This finishes the whole proof. O

We have proved that on W1
L=T+S, rS) <o<l.

Then
LY =TIy + 5.
Hence,
[1£7h = Tohllyy = 15™Ally,y < o™ [[All1, -
Moreover, Ilgh = Ag for some A € C and

/Hohdm:/)\gdm:)\/gdm:)\.

On the other hand,

so by dominated convergence theorem,

/Hohdm: /hdm.

Thus we get Iph = (| hdm)g, which shows that there is o € (0,1) such
that for all h € WHH(T),

’E”h— (/hdm) ngl <" ||k, (5.5)

for some g € WH(T) satisfying g > 0, Lg = g and [ gdm = 1.




STATISTICAL PROPERTIES FOR CERTAIN DYNAMICAL SYSTEMS 115

Using this, one can derive a large deviations principle and a cen-
tral limit theorem for (T, f) with observables in W' (T), see for in-
stance [3]. The arguments of course are quite involved. We propose
a different strategy, using the Markov operator and the abstract re-
sults derived above, which will provide an effective LDT estimate and
a CLT.

Note that £1 = 1 if and only if the reference measure m is f-
invariant. This holds for instance when f is the doubling map, but
does not hold in general, hence the transfer operator is usually not a
Markov operator.

However, changing the reference measure for du = gdm, where g was
described above, since Lg = g we have that p is f-invariant. Consider
the transfer operator relative to this reference measure

df*/ih
dp

Oh =

where duy, := hdpu.

Then Q1 = 1 so this transfer operator is also a Markov operator and
w is a stationary measure (since [ Qhdp = [ hdpu for all h). Moreover,
Q is related to L by

(Qh)g = L(hg),
1 9(y)
Oh(x) = — > =r5h(y)
o), 22 17 )
which shows that the Markov kernel is given by K: T — Prob(T),

K.(y)= ) )

e 9@ ()l

That is, K, is a convex combination of Dirac delta measures supported
on the pre-images of the point x. Since, moreover, for all n € N,

(Q"h)g = L"(hg), we have that

Q"h — /hdu = ; (.c"(hg) —g/hgdm) .

Therefore, using (5.5)),

HQ"h— /hduHCO < H; <£" hgdm)
)
)

SO

1,1
Cl(yg ‘E"(hg) —g/hgde
C(g n||h9||11 <C'(g)o" Hh||1,1 )
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where C(g),C’(g) < oo depend only on the Wh!-norms of g and %.

This shows that the observed Markov system (T, K, u, WHH(T)) is
strongly mixing with exponential rate. By Theorem and Theo-
rem [2.2] effective LDT estimates and a CLT hold for this stochastic
dynamical system, which then easily translate to effective LDT esti-
mates and a CLT for the deterministic dynamical system (T, f, ) with
observables in W!(T). More precisely, we obtain the following (com-
pare with Theorem 1.22 and Theorem 1.32 in [3]).

Theorem 5.7. Let p € WHH(T). Given any € > 0 there are n(e) € N
and c(e) > 0 such that for all n > n(e) we have

M{a:: ‘<P(fc)+900f(fr)+~-+<p0f”‘1(x) —/SOdM‘ > e} < el
T

n

Besides €, the parameters n(e) and c(€) only depend (explicitly) on the
Whtnorms of o, g and é.

Moreover, if [ @dp =0 and if ¢ is not a coboundary, which in this
setting means that there is no function n € C°(T) such that p() =
n(0) —no f(0) for all @ € T, then there is 0 = o(p) > 0 such that

... n_l
prpoft-—teof" 4\
o\/n

Proof. Let Xt := T and let P be the Markov measure on X with
initial distribution g and transition kernel K defined above. For an
observable ¢p: T — R, we reserve the notation S, for the stochastic
Birkhoff sums S,p: X — R,

Snip(w) = p(wo) + p(wi) + -+ + p(wn-1),

while the expression of the (deterministic) Birkhoff sums relative to de
dynamics f will be written explicitly.

For every x € T, K, is supported on the pre-images of z via f. Then
the set  of “admissible words” consists of sequences w = {wy, }nen €
X that satisfy f(wj1) = wj for all j € N. This is, as it should be, a
full P-measure set. Indeed,

0= ﬂ {fweXT: flw) =w;} = ﬂo‘j {weXT: f(w) =wo}

jeN jeN

(0,1).

and
P{we X*: f(w) =wo} = /Kwo {wi: flwr) =wo} dp(wp) = 1.

Since u is K-stationary, P is o-invariant, so P(2) = 1.
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As already established, (T, K, u, W(T)) is strongly mixing, so ap-
plying the abstract LDT in Theorem [2.1] for n > n(e) we have that

1
P{w e Xt ‘—Sngo(w) - /god,u > e} < emam
n
On the other hand, let

P {xET: ‘¢($)+900f(1?)+~-+900f”1(1’) _/Egpdu’ >€}.

n

Then since p is K-stationary,
u(E) = /K;‘(E) du(z) = /IP’I {we XT:w, € E} du(z)
=P{we Xt w, € B} =P{we:w, € E}

:P{wGQ: ‘@(wn)+sﬁ(wn—1)+---+s@(wl) _/TW

n

-4
ZP{w: ‘%Sn¢(w)—/¢dﬂ

which proves the LDT estimate for the dynamical system (T, f, ).

Now let us assume that ¢ has g-mean zero and it is not a coboundary.
We first show that the abstract CLT given by Theorem is applica-
ble to the Markov system (T, K, u, WHH(T)). Indeed, its ergodicity is
derived exactly as in Proposition. Moreover, for ¢ := Y > Q"p,
if, by contradiction, o2(p) := ||¥||5 — [|Q¢||> = 0, then exactly as in the
proof of Proposition 2.2 we obtain that ¢(y) = Qu(z) for p-a.e. x € T
and K -a.e. y € T. This immediately implies that ¥(y) = Qu/(f(y))
for p-a.e. y € T. But since ¢ and Qo f are continuous and du = g dm,
where ¢ is continuous and bounded away from zero, we conclude that
1 = Qi o f everywhere. But then

p=1—QY=0Qhof—-Qy,

showing that ¢ is a coboundary, which is a contradiction.
Then the abstract CLT is applicable, so for all A € R we have

Snp(w) } /’\ o2 dx
Plwe x+: 227 oL ; .
{“’ N ' Vom

> 6} < e—c(e)n7

As before, we can show that
PR n_l
u{x: p(x)+---+pof (x)gA}:P{w:S”L(W)gA},
o\v/n o\v/n
which establishes the CLT for the dynamical system (T, f, ). O
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2 1
11
matrix action of Arnold’s cat map. Obviously det A = 1. Let the cat
map f : T? — T? be such that f(z) = Az mod 1. Simple calculation
gives Ay = %5 with AL A_ = 1. In the following we denote \ := AT,
We have that

5.3. Toral automorphism. Let A = be the corresponding

Avt = o, Av® = N,

where v*, v® are the corresponding eigenvectors of A and A~! and thus
(v*,v%) = 0.

Remark 5.5. In general, we may consider symmetric matrix A €
SL(2,Z) with a;; > 0,4,j =1, 2.

The transfer operator corresponding to f is
Lh="ho f!

where £ is uniquely determined by
/ @+ Lhdm = po f-hdm, Y¢e& L*(dm).
T2 T2

In fact, (f, T? m) is mixing. Moreover, without loss of generality we
assume [, hdm = 1.

We will prove that we can get exponential mixing. The main tool
we use is Fourier Analysis. By direct computation,

(LR = / ¢=2mi005) £ (0 o ()
T2

where k = (ky, ko) € Z2, x = (z1,72) € T? and (k,z) = k121 + kata.
For simplicity, we assume that h € C"(T?) with r > 2, then

Using the unique representation and the symmetry of A, we have

(Lrh)y = / e 2 RAE b () dm(z) = / e 2T HARE) b () dim().
T2

’]I‘2

—_ -~

which shows that (L7h), = (h)ang.
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Hence, Vo,h € C"(T?) and Vn € N, we have (using Paserval’s
Theorem in the first inequality)

‘/(p L2 hdm — /gpdm /hdm‘ Z ](pk] hAan

k+(0,0)

o rmwwww

= 2 (kI + 1) (A% + 1y
-y bl
< 2 (A + (AR + 1

To obtain further estimates, note that since k = av* 4+ bv® with
|k||> = a2 + b2, then

A"k = a\"v" + b

and
A7k = aA """ + DA™’
Therefore,
AR+ (AR = @+ 20 = [k 47,
SO

(A + D (| ATK]| + 1) = (5] A"

which gives

‘/gp-ﬁ%hdm—/@dm-/hdm

where C). is a constant depending only on r.

This proves the exponential mixing (decay of correlation) of the
transfer operator.

Now let us introduce the Sobolev norm. Consider C*(T?, C), we

< Crlleller [[pllgr A

define )
B2 =) (k) (k) =1+ k|
kez?
and ,
Bl = 3 (k7 [

keZ?

where o € C°(PP,[—1,1]) is defined in the following way.
Fix some o € (A7, 1), then 3K > 0 such that

(Av) > 072(v), Vve L, |v] > K,
(Av) < 0*(v), Vel vl > K,
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where I, are neighborhoods of v*,v* and we denote I = A*I, C I..
Then « is defined as

1, it kel
ak) = -1, itkel
others, monotonic.

For v € P\{I; U I_}, there exists ¢ > 0 such that d(v, Av) > c.
Therefore, 3+ > 0 such that

a) —a(A™) >y e alv) —y>a(d ), VoeP\{I,Ul_}.

We want to obtain Lasota-Yorke type inequality for the Sobolev
norm. By computation, we have

Ih]2, = 3 (kyre® ‘EM)Q =3

keZ? keZ?

<A—1k.>pa(A’1k)
(k)po(k)

—~ |2
- (k)ypatk) ’hk’ .

If kel, and k > K, we have

—17.\a(A™ k) -1
(AR (A,

(k)= Gl

If kel and k > K, we have

(AR gy,
CECEERR Ve

Ifk¢ I, Ul let B:=|A™!, then

AL a(A1Ek) AL a(k)—y B
< </~c>>a<k> < </<;>Zc<k> s Btk

Hence, denote
r:.= {k cZ?: (k) < max{(0_2B)%,K} = L}

which is a finite set. Then

<A—1k>a(A*1k) )
g <7
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2
Therefore, denote ||h|? = Y ker ‘hk‘

<A—1k:>pa(z4*1k) 12
120l = | Do RO ]+ 3
ker k¢l

<\ B2 + 0% A,
< C bl + 0" [hllo -

This is the Lasota-Yorke inequality that we want.

The following goal is to prove that for toral automorphism, the trans-
fer operator is quasi-compact on C°°(T?, C, ||-|| o)+ 10 fact, it is possible
to prove that there is a Lasota-Yorke also on ||-|| 5 where 3¢ > 0 s.t.
B+ ¢ < a. Moreover, [-]| 5 is weakly compact on the space [|-[|,,,. By
Hennion, we get quasi-compactness.

We finish this subsection with a remark.

Remark 5.6. If we consider C", C'%, the transfer operator will have
spectral radius larger than 1. Compared with our Markov operator,
controlling the Sobolev space here is like controlling the future when
we consider observables depending on all coordinates.

6. LIMIT LAWS FOR HYPERBOLIC SYSTEMS
7. PARTIALLY HYPERBOLIC SYSTEMS

These notes may eventually become a book. Any suggestions for
improvement are welcome. A more up-to-date version of certain parts
of this manuscript can be found in our recent preprint [2]. The sec-
tions on transfer operators and uniformly hyperbolic (or even partially
hyperbolic) maps may expand. A proof of the abstract CLT will be
included (if we manage to come up with an argument ourselves, or find
someone to help us with the translation from Russian of [4]). Well, we
have a very long way to go.
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