ESPAÇOS DE MEDIDA ABSTRATOS

SILVIUS KLEIN

Sumário

1.	Sigma-álgebras e espaços mensuráveis	1
1.1.	. Geração de sigma-álgebras	2
1.2.	. O mecanismo padrão para conjuntos	3
2.	Medidas abstratas	4
3.	Funções mensuráveis	6
4.	A integral de uma função mensurável	9
5.	Os teoremas de convergência	14
6.	Consequências do teorema de convergência monótona	17
	Modos de convergência	22

Construímos uma família de subconjuntos do espaço euclidiano chamados de conjuntos Lebesgue mensuráveis e definimos a medida de tais conjuntos; introduzimos uma classes geral de funções no espaço euclidiano chamadas de funções Lebesgue mensuráveis e definimos um conceito de integração para tais funções.

O objetivo deste capítulo é desenvolver uma teoria semelhante em um cenário abstrato.

1. SIGMA-ÁLGEBRAS E ESPAÇOS MENSURÁVEIS

Definição 1. Dado um conjunto X, uma σ -álgebra sobre X é uma coleção \mathcal{B} de subconjuntos de X tal que

- $(1) \varnothing \in \mathcal{B},$
- (2) se $E \in \mathcal{B}$ então $E^{\complement} \in \mathcal{B}$,
- (3) se $\{E_n : n \geq 1\} \subset \mathcal{B}$ então $\bigcup_{n \geq 1} E_n \in \mathcal{B}$.

Um par (X, \mathcal{B}) , onde X é um conjunto (o espaço ambiente) e \mathcal{B} é uma σ -álgebra sobre X é chamado de espaço mensurável.

Os elementos de \mathcal{B} são ditos conjuntos \mathcal{B} -mensuráveis ou simplesmente, mensuráveis.

Observação 1. Note que o espaço ambiente $X = \varnothing^{\complement} \in \mathcal{B}$. Além disso, \mathcal{B} é fechada também com respeito a interseções enumeráveis: se $\{E_n \colon n \geq 1\} \subset \mathcal{B}$ então

$$\bigcap_{n\geq 1} E_n = \left(\bigcup_{n\geq 1} E_n^{\complement}\right)^{\complement} \in \mathcal{B}.$$

A seguir apresentamos alguns exemplos gerais de σ -álgebras.

Exemplo 1 (de σ -álgebras). Seja X um espaço ambiente.

- (1) A σ -álgebra trivial: $\mathcal{B} = \{\emptyset, X\}$.
- (2) A σ -álgebra discreta: $\mathcal{B} = 2^X = \{E : E \subset X\}.$

(3) A σ -álgebra atômica. Dada uma partição

$$X = \bigsqcup_{\alpha \in \mathcal{I}} A_{\alpha}$$

de X em "átomos", seja

$$\mathcal{B} := \left\{ igcup_{lpha \in \mathcal{I}} A_lpha \colon \mathcal{J} \subset \mathcal{I}
ight\} \,.$$

Então \mathcal{B} é uma σ -álgebra (atômica). A prova deste fato é um exercício. Note que a σ -álgebra trivial é atômica, que corresponde à partição

$$X = \varnothing \sqcup X$$
,

enquanto a σ -álgebra discreta também é atômica, onde todos os singletons são átomos:

$$X = \bigsqcup_{x \in X} \{x\}.$$

(4) A σ -álgebra diádica de determinada geração. Dado $n \geq 0$, considere a partição de reta real \mathbb{R} em intervalos diádicos de geração n,

$$\mathbb{R} = \bigsqcup_{j \in \mathbb{Z}} \left[\frac{j}{2^n}, \, \frac{j+1}{2^n} \right)$$

e a σ -álgebra atômica $\mathfrak{D}_n(\mathbb{R})$ correspondente.

A mesma construção pode ser feita em \mathbb{R}^d , $d \geq 1$, usando caixas diádicas em vez de intervalos diádicos.

1.1. Geração de sigma-álgebras. Dadas duas σ -álgebras \mathcal{B} e \mathcal{B}' , se $\mathcal{B} \subset \mathcal{B}'$ dizemos que \mathcal{B}' é mais fina do que \mathcal{B} , ou que \mathcal{B} é mais grosseira do que \mathcal{B}' .

Por exemplo, para todo $n \in \mathbb{N}$,

$$\mathfrak{D}_n(\mathbb{R}) \subset \mathfrak{D}_{n+1}(\mathbb{R}).$$

É fácil verificar que a interseção de qualquer família $\{\mathcal{B}_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ de σ -álgebras sobre X também é uma σ -álgebra sobre X, o que nos permite introduzir o seguinte conceito.

Definição 2. Dada uma coleção \mathcal{F} de subconjuntos de um espaço ambiente X, seja

$$\sigma(\mathcal{F}) := \bigcap \left\{ \mathcal{B} \colon \mathcal{B} \supset \mathcal{F}, \, \mathcal{B} \text{ \'e uma } \sigma - \text{\'algebra} \right\} \, .$$

Então $\sigma(\mathcal{F})$ é uma σ -álgebra sobre X chamada a σ -álgebra gerada por \mathcal{F} . Ela é a menor (ou a mais grosseira) σ -álgebra que contém a coleção \mathcal{F} .

Note que $2^X\supset \mathcal{F}$ e como 2^X é uma σ -álgebra, a interseção de σ -álgebras acima é bem definida.

Definição 3 (a σ -álgebra de Borel). Denotamos por $\mathcal{B}(\mathbb{R}^d)$ a σ -álgebra gerada pela topologia do espaço euclidiano, ou seja,

$$\mathcal{B}(\mathbb{R}^d) := \sigma \left\{ U \subset \mathbb{R}^d \colon U \text{ aberto} \right\} .$$

Mais geralmente, dado um espaço topológico qualquer (X, \mathcal{T}) ,

$$\mathcal{B}(X) := \sigma(\mathcal{T}) = \sigma \{ U \subset X \colon U \text{ aberto} \}$$

é chamada a σ -álgebra de Borel do espaço (X, \mathcal{T}) .

Os conjuntos $E \in \mathcal{B}(X)$ são chamados de conjuntos borelianos.

Exemplo 2 (de conjuntos borelianos). Todos os conjuntos abertos, fechados, do tipo F_{σ} (i.e., uniões enumeráveis de conjuntos fechados), do tipo G_{δ} (i.e., interseções enumeráveis de conjuntos abertos) são conjuntos borelianos.

1.2. O mecanismo padrão para conjuntos. Considere uma coleção $\mathcal F$ de subconjuntos de X é a σ -álgebra $\sigma(\mathcal{F})$ gerada por \mathcal{F} . Dada uma propriedade P sobre subconjuntos de X, para provar a afirmação

$$P(E)$$
 vale para todo $E \in \sigma(\mathcal{F})$

basta provar que:

- (1) P(E) vale para todo $E \in \mathcal{F}$;
- (2) A coleção

$$\mathcal{A} := \{ E \subset X \colon P(E) \text{ vale} \}$$

é uma σ -álgebra, ou seja,

- $\blacksquare P(\varnothing)$ vale,
- se P(E) vale, então $P(E^{\complement})$ vale,
- se $P(E_n)$ vale para todo $n \ge 1$ então $P(\bigcup_{n>1} E_n)$ vale.

Proposição 1. Sejam X e Y dois espaços topológicos e seja $f: X \to Y$ uma função contínua. Então para todo conjunto boreliano $E \in \mathcal{B}(Y)$, sua pré-imagem $f^{-1}(E) \in \mathcal{B}(X)$, i.e., ele é um conjunto boreliano em X.

Demonstração. Para provar a afirmação

$$f^{-1}(E) \in \mathcal{B}(X)$$
 para todo $E \in \mathcal{B}(Y)$

usamos o mecanismo padrão para conjuntos, lembrando que $\mathcal{B}(Y)$ é a σ -álgebra gerada pelos conjuntos abertos em Y.

- (1) Para todo conjunto aberto E in Y, como f é contínua, $f^{-1}(E)$ é aberto, então boreliano, ou seja, ele pertence a $\mathcal{B}(X)$.
- (2) Seja

$$\mathcal{A} := \left\{ E \in \mathcal{B}(Y) \colon f^{-1}(E) \in \mathcal{B}(X) \right\} .$$

Tem-se

- $\bullet f^{-1}(\varnothing) = \varnothing \in \mathcal{B}(X).$
- Se $E \in \mathcal{A}$ então $f^{-1}(E) \in \mathcal{B}(X)$. Como $\mathcal{B}(x)$ é uma σ -álgebra, $f^{-1}(E)^{\complement} \in \mathcal{B}(X)$ também. Mas $f^{-1}(E^{\complement}) = f^{-1}(E)^{\complement} \in \mathcal{B}(X)$, mostrando que $E^{\complement} \in \mathcal{A}$. • Se $\{E_n : n \geq 1\} \subset \mathcal{A}$ então $f^{-1}(E_n) \in \mathcal{B}(X)$ para todo $n \geq 1$. Como $\mathcal{B}(X)$ é uma
- σ -álgebra, segue que

$$f^{-1}(\bigcup_{n\geq 1} E_n) = \bigcup_{n\geq 1} f^{-1}(E_n) \in \mathcal{B}(X),$$

mostrando que $\bigcup_{n>1} E_n \in \mathcal{A}$.

Observação 2. A σ -álgebra $\mathcal{B}(\mathbb{R}^d)$ de conjuntos borelianos do espaço euclidiano é estritamente mais grosseira que a de todos os conjuntos mensuráveis à Lebesgue, ou seja

$$\mathcal{B}(\mathbb{R}^d) \subsetneq \mathcal{L}(R^d)$$
.

De fato, todo conjunto aberto é Lebesgue mensurável, então a σ -álgebra $\mathcal{L}(\mathbb{R}^d)$ contém a σ -álgebra $\mathcal{B}(\mathbb{R}^d)$ geradas pelos conjuntos abertos.

O exercício seguinte fornece um exemplo de conjunto não boreliano mas ainda mensurável à Lebesgue. A construção descrita abaixo, baseada no conjunto de Cantor e na função "escada do diabo" de Cantor, será usada para obter vários outros contraexemplos.

Exercício 1. Sejam $\mathcal{C} \subset [0,1]$ o conjunto de Cantor e $c : [0,1] \to [0,1]$ a função de Cantor, Considere a função

$$f: [0,1] \to [0,2], \quad f(x) = x + c(x).$$

Então,

- (i) f é uma função contínua, sobrejetiva e (estritamente) crescente, portanto é bi-contínua.
- (ii) A imagem do conjunto de Cantor pela função f é mensurável e

$$m(f(\mathcal{C})) = 1.$$

Por isso (usando um exercício anterior) existe um conjunto $n\tilde{a}o$ mensurável $\mathcal{N}\subset f(\mathcal{C})$.

(iii) Seja

$$E := f^{-1}(\mathcal{N}) \subset \mathcal{C}$$
.

Então E é mensurável à Lebesgue mas não é um conjunto boreliano.

Proposição 2. Cada uma das seguintes famílias de conjuntos gera a σ -álgebra de Borel $\mathcal{B}(\mathbb{R}^d)$:

- (i) A família de conjuntos abertos.
- (ii) A família de conjuntos fechados.
- (iii) A família de conjuntos compactos.
- (iv) A família de bolas abertas (ou fechadas).
- (v) A família de caixas (ou de caixas diádicas).

Demonstração. Exercício.

2. Medidas abstratas

Definição 4. Seja (X, \mathcal{B}) um espaço mensurável. Uma função

$$\mu \colon \mathcal{B} \to [0, \infty]$$

é chamada de medida (σ -aditiva) em (X, \mathcal{B}) se

- (i) $\mu(\emptyset) = 0$ e
- (ii) para toda coleção mensurável de conjuntos mensuráveis disjuntos $\{E_n : n \geq 1\} \subset \mathcal{B}$, temos

$$\mu\left(\bigcup_{n>1} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n).$$

A tripla (X, \mathcal{B}, μ) , consistindo em um conjunto X, uma σ -álgebra \mathcal{B} sobre X e uma medida μ em (X, \mathcal{B}) é chamada de espaço de medida.

Em seguida apresentamos alguns exemplos de espaços de medida.

Exemplo 3. O espaço da medida de Lebesgue $(\mathbb{R}^d, \mathcal{L}(\mathbb{R}^d), m)$. A medida m é também referida como a medida de volume.

Um outro exemplo comum é o espaço $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), m)$ da medida de Borel, ou seja, o espaço de Borel munido com a restrição da medida de volume.

Exemplo 4. A medida trivial em (X, \mathcal{B}) : $\mu(E) = 0$ para todo $E \in \mathcal{B}$.

Exemplo 5 (a medida de Dirac). Seja (X, \mathcal{B}) um espaço mensurável qualquer e seja $x \in X$ um ponto. A medida de Dirac com centro em x é dada por

$$\delta_x \colon \mathcal{B} \to [0, \infty), \quad \delta_x(E) = \begin{cases} 1, & \text{se } x \in E \\ 0, & \text{se } x \notin E \end{cases} = \mathbf{1}_E(x).$$

Note que a função δ_x é, de fato, uma medida:

- (i) $\delta_x(\varnothing) = \mathbf{1}_{\varnothing}(x) = 0$.
- (ii) Se $\{E_n : n \geq 1\} \subset \mathcal{B}$ são disjuntos, então

$$\delta_x \left(\bigsqcup_{n \ge 1} E_n \right) = \mathbf{1}_{\bigsqcup_{n \ge 1} E_n} (x)$$
$$= \sum_{n=1}^{\infty} \mathbf{1}_{E_n} (x) = \sum_{n=1}^{\infty} \delta_x (E_n).$$

Exemplo 6 (soma de medidas de Dirac ou de pontos de massa). Seja (X, \mathcal{B}) um espaço mensurável. Dados pontos $x_1, \ldots, x_k \in X$ e números $c_1, \ldots, c_k \in [0, \infty]$, seja

$$\mu := \sum_{i=1}^k c_i \, \delta_{x_i} \, .$$

Então μ é uma medida em (X, \mathcal{B}) (exercício) chamada de soma de medidas de Dirac com massa concentrada em x_1, \ldots, x_k e pesos c_1, \ldots, c_k .

A ideia é que além do volume (ou área, ou comprimento), a massa de um objeto também pode ser considerada como uma medida. Uma soma de medidas de Dirac corresponde ao caso de uma coleção *discreta* de centros de massa.

Exemplo 7. Mais geralmente, dada uma sequência $\{\mu_n\}_{n\geq 1}$ de medidas em (X,\mathcal{B}) e uma sequência $\{c_n\}_{n\geq 1}$ de números não negativos,

$$\mu := \sum_{n=1}^{\infty} c_n \, \mu_n$$

é uma medida em (X, \mathcal{B}) (exercício).

Exemplo 8 (medida de contagem). Seja (X, \mathcal{B}) um espaço mensurável. A medida de contagem é a função $\#: \mathcal{B} \to [0, \infty], \#(E) =$ a cardinalidade de E se E for finito e $\#(E) = \infty$ se E for um conjunto infinito.

Em seguida listamos algumas propriedades básicas de uma medida. Começamos com uma notação útil.

Notação. Dada uma sequência $\{E_n\}_{n\geq 1}$ de conjuntos, usamos as seguintes notações:

- $E_n \nearrow E$ significa o seguinte: $\forall n \geq 1, E_n \subset E_{n+1} \in \bigcup_{n>1} E_n = E$.
- $E_n \searrow E$ significa o seguinte: $\forall n \geq 1, E_n \supset E_{n+1} \in \bigcap_{n \geq 1} E_n = E$.

Proposição 3. Seja (X, \mathcal{B}, μ) um espaço de medida. As seguintes afirmações são válidas.

- (i) (monotonicidade) Sejam $E, F \in \mathcal{B}$. Se $E \subset F$ então $\mu(E) \leq \mu(F)$.
- (ii) $(\sigma$ -subaditividade) Se $\{E_n : n \geq 1\} \subset \mathcal{B}$ então

$$\mu\left(\bigcup_{n>1} E_n\right) \le \sum_{n=1}^{\infty} \mu(E_n).$$

- (iii) (convergência monótona para conjuntos) Sejam $\{E_n : n \geq 1\} \subset \mathcal{B} \ e \ E \in \mathcal{B}$.
 - Se $E_n \nearrow E$ então $\mu(E_n) \to \mu(E)$ quando $n \to \infty$.
 - Se $E_n \setminus E$ e $\mu(E_1) < \infty$ então $\mu(E_n) \to \mu(E)$ quando $n \to \infty$.

Demonstração. O argumento é idêntico ao da medida de Lebesgue em \mathbb{R}^d e é deixado com exercício.

Da mesma forma que no caso da medida de Lebesgue, introduzimos os seguintes conceitos.

Definição 5. Seja (X, \mathcal{B}, μ) um espaço de medida. Um conjunto mensurável $E \in \mathcal{B}$ é chamado μ -negligenciável, ou de medida nula se $\mu(E) = 0$.

Uma propriedade P(x) é válida para quase todo ponto $x \in X$ com respeito à medida μ , ou, de uma forma mais concisa, dizemos que P(x) vale para μ -q.t.p. $x \in X$ se o conjunto

$$\{x \in X : P(x) \text{ não \'e v\'alida}\}$$

é \mathcal{B} -mensurável e de medida nula.

Observação 3. Em geral, um subconjunto de um conjunto negligenciável $n\tilde{a}o$ e necessariamente mensurável. Por exemplo, considerando o espaço da medida de Borel $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$, o conjunto $E \subset \mathcal{C}$ do Exercício 1 não é boreliano, embora o conjunto de Cantor \mathcal{C} seja boreliano e $m(\mathcal{C}) = 0$.

Esta observação motiva a seguinte definição.

Definição 6. Um espaço de medida (X, \mathcal{B}, μ) é dito *completo* se todo conjunto de um conjunto μ -negligenciável é mensurável, ou seja,

se
$$E \in \mathcal{B}$$
, $\mu(E) = 0$ e $F \subset E$ então $F \in \mathcal{B}$.

Por exemplo, $(\mathbb{R}^d, \mathcal{L}(\mathbb{R}^d), m)$ é completo, mas $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), m)$ não é completo.

3. Funções mensuráveis

Definição 7. Seja (X, \mathcal{B}) um espaço mensurável. Uma função $f: X \to [0, \infty]$ é dita \mathcal{B} -mensurável (ou, simplesmente, mensurável) se para todo conjunto aberto $U \subset [0, \infty]$, temos

$$\{f \in U\} := f^{-1}(U) \in \mathcal{B},$$

ou seja, se para todo aberto U, $\{f \in U\}$ é mensurável.

Similarmente, uma função $f: X \to \mathbb{R}$ é mensurável se $\{f \in U\} \in \mathcal{B}$ para todo aberto $U \subset \mathbb{R}$.

Observação 4. Um conjunto $E \in \mathcal{B}$ se e somente se sua função indicadora $\mathbf{1}_E$ é mensurável. De fato, como $E = \{\mathbf{1}_E \in (0,2)\}$, se $\mathbf{1}_E$ é mensurável, segue que $E \in \mathcal{B}$.

Por outro lado, supondo que E seja mensurável e dado $U \subset \mathbb{R}$ aberto, como

$$\{\mathbf{1}_{E} \in U\} = \begin{cases} X & \text{se } 0 \in U \text{ e } 1 \in U \\ \emptyset & \text{se } 0 \notin U \text{ e } 1 \notin U \\ E & \text{se } 0 \notin U \text{ e } 1 \in U \\ E^{\complement} & \text{se } 0 \in U \text{ e } 1 \notin U, \end{cases}$$

segue que $\{\mathbf{1}_E \in U\} \in \mathcal{B}$, monstrando a mensurabilidade de $\mathbf{1}_E$.

Proposição 4. Seja $f: X \to \mathbb{R}$ uma função mensurável. Então para todo conjunto boreliano $E \in \mathcal{B}(\mathbb{R})$, tem-se

$$\{f \in E\} \in \mathcal{B}.$$

Demonstração. Utilizamos o mecanismo padrão para conjuntos. Seja

$$\mathcal{A} := \big\{ \mathbb{E} \subset \mathbb{R} \colon \{ f \in E \} \text{ \'e mensur\'avel} \big\}.$$

Como a função f é mensurável, segue que $U \in \mathcal{A}$ para todo conjunto aberto $U \subset \mathbb{R}$. Por outro lado, \mathcal{A} é uma σ -álgebra. De fato,

- $\bullet \{f \in \emptyset\} = \emptyset \in \mathcal{A}.$
- Se $E \in \mathcal{A}$ então $\{f \in E\} \in \mathcal{B}$, e daí,

$$\{f \in E^{\complement}\} = \{f \in E\}^{\complement} \in \mathcal{B},$$

portanto $E^{\complement} \in \mathcal{A}$.

■ Se $\{E_n\}_{n\geq 1}\subset \mathcal{A}$ então $\{f\in E_n\}\in \mathcal{B}$ para todo $n\geq 1$. Como

$$\left\{ f \in \bigcup_{n \ge 1} E_n \right\} = \bigcup_{n \ge 1} \left\{ f \in E_n \right\} \in \mathcal{B},$$

segue que $\bigcup_{n>1} E_n \in \mathcal{A}$.

Concluímos que $\mathcal{A} \supset \mathcal{B}(\mathbb{R})$, já que $\mathcal{B}(\mathbb{R})$ é a menor σ -álgebra contendo os conjuntos abertos.

Observação 5. Em geral $n\tilde{a}o$ é verdadeiro que dados um espaço mensurável (X, \mathcal{B}) , uma função mensurável $f: X \to \mathbb{R}$ e um conjunto (apenas) Lebesgue mensurável $S \subset \mathbb{R}$,

$$\{f \in S\} \in \mathcal{B}.$$

Por exemplo, considere a função do Exercício da aula passada, $f:[0,1] \to [0,2], f(x) = x + c(x)$, onde c é a função de Cantor.

Seja $g:[0,2]\to[0,1]$ a inversa de f e note que g é mensurável pois é contínua. Considere, como no mesmo Exercício da aula passada, um conjunto $n\tilde{a}o$ mensurável $\mathcal{N}\subset f(\mathcal{C})$ e seja

$$E := g(\mathcal{N}) = f^{-1}(\mathcal{N}) \subset \mathcal{C}.$$

Então E é Lebesgue mensurável, enquanto $\mathcal{N} = g^{-1}(E)$ não é Lebesgue mensurável.

Definição 8. Dados dois espaços mensuráveis (X, \mathcal{B}_X) e (Y, \mathcal{B}_Y) , uma função $f: X \to Y$ é chamada de mensurável se $f^{-1}(E) \in \mathcal{B}_X$ para todo $E \in \mathcal{B}_Y$.

Observação 6. Dado um espaço mensurável (X, \mathcal{B}) e uma função $f: X \to \mathbb{R}$, o contradomínio \mathbb{R} é a priori munido com a σ -álgebra de Borel (em vez da Lebesgue). Desta forma, a noção de mensurabilidade da função $f: X \to \mathbb{R}$ é consistente com o conceito mais geral introduzido acima.

Definição 9. Dado um espaço mensurável (X, \mathcal{B}) , uma função $s: X \to [0, \infty]$ é chamada de função simples sem sinal se

$$s = \sum_{i=1}^{k} c_i \mathbf{1}_{E_i},$$

para alguns números $c_i \in [0, \infty]$ e conjuntos $E_i \in \mathcal{B}, i \in [k]$.

Similarmente, $s: X \to \mathbb{R}$ é uma função simples (com sinal) se

$$s = \sum_{i=1}^{k} c_i \mathbf{1}_{E_i}$$

onde $c_i \in \mathbb{R}, E_i \in \mathcal{B}$ para todo $i \in [k]$.

Observação 7. Toda função simples é mensurável. De fato, se $s = \sum_{i=1}^k c_i \mathbf{1}_{E_i}$, então dado qualquer aberto U (em $[0, \infty]$ ou \mathbb{R}),

$$\{s \in U\} = \bigcup \{E_i : c_i \in U, i \in [k]\},\$$

então $\{s \in U\} \in \mathcal{B}$.

Além disso, note que somas e produtos de funções simples são funções simples também.

Os seguintes resultados básicos sobre funções mensuráveis $f:(X,\mathcal{B})\to\mathbb{R}$ são análogos aos resultados correspondentes sobre funções mensuráveis à Lebesgue $f:\mathbb{R}^d\to\mathbb{R}$. As demonstrações deles também são idênticas às demonstrações no contexto euclidiano; por isso, omitiremos os detalhes técnicos das provas.

Teorema 9. Seja (X, \mathcal{B}) um espaço mensurável.

página 7

- (1) Uma função $f: X \to \mathbb{R}$ (ou $[0,\infty]$) é mensurável se e somente se para todo $\lambda \in \mathbb{R}$, o conjunto $\{f > \lambda\} \in \mathcal{B}$. Isto também é equivalente a $\{f \ge \lambda\} \in \mathcal{B}$ (ou $\{f < \lambda\} \in \mathcal{B}$, ou $\{f \le \lambda\} \in \mathcal{B}$) para todo $\lambda \in \mathbb{R}$.
- (2) Uma função $f: X \to \mathbb{R}$ é mensurável se e somente se f^+ e f^- são mensuráveis, onde $f^+, f^-: X \to [0, \infty)$,

$$f^{+}(x) := \max\{f(x), 0\} \ e$$
$$f^{-}(x) := \max\{-f(x), 0\}.$$

- (3) Se $\{f_n\}_{n\geq 1}$ é uma sequência de funções mensuráveis e $f_n \to f$ em todo ponto, então o limite f é mensurável.
- (4) Se $f: X \to \mathbb{R}$ é mensurável e $\phi: \mathbb{R} \to \mathbb{R}$ é contínua, então $\phi \circ f$ é mensurável.

Demonstração. (1) O conjunto $\{f > \lambda\} = f^{-1}(\lambda, \infty)$ e (λ, ∞) é aberto, portanto a implicação indireta segue.

Para justificar a implicação direta, note que todo aberto $U \subset \mathbb{R}$ pode ser escrito como uma união enumerável de intervalos abertos: $U = \bigcup_{n>1} (a_n, b_n)$. Como

$$\{f \in U\} = \bigcup_{n \ge 1} \{f \in (a_n, b_n)\},\$$

basta provar que $\{f \in (a,b)\}\in \mathcal{B}$ para todo intervalo (a,b). Mas

$${f \in (a,b)} = {f > a} \cap {f < b}.$$

Além disso,

$$\{f < b\} = \{f \ge b\}^{\mathbb{C}} = \left\{\bigcap_{n \ge 1} \left\{f > b - \frac{1}{n}\right\}\right\}^{\mathbb{C}}$$

que pertence a \mathcal{B} . Logo, $\{f \in (a,b)\} \in \mathcal{B}$.

(2) A equivalência é uma consequência das seguintes identidades: para todo $\lambda \geq 0$,

$$\begin{split} \{f^+ > \lambda\} &= \{f > \lambda\}, \\ \{f^- > \lambda\} &= \{-f > \lambda\} = \{f < -\lambda\}, \\ \{f = 0\} &= \{f^+ = 0\} \cap \{f^- = 0\}. \end{split}$$

(3) Não é difícil verificar que

$$f(x) = \lim_{n \to \infty} f_n(x) > \lambda$$
 sse $\exists m \ge 1 \ \exists N \ge 1 \ \forall n \ge N \ f_n(x) > \lambda + \frac{1}{m}$.

Portanto,

$$\{f > \lambda\} = \bigcup_{m \ge 1} \bigcup_{N \ge 1} \bigcap_{n \ge N} \{f_n > \lambda + \frac{1}{m}\} \in \mathcal{B}.$$

(4) Se $U \subset \mathbb{R}$ é aberto, como ϕ é contínua, $\{\phi \in U\} = \phi^{-1}(U)$ é aberto. Portanto,

$$\{\phi \circ f \in U\} = (\phi \circ f)^{-1}(U) = f^{-1}(\phi^{-1}(U))$$

é mensurável.

Teorema 10. Seja (X, \mathcal{B}) um espaço mensurável.

- (1) Uma função $f: X \to [0, \infty]$ é mensurável se e somente se existe uma sequência não decrescente $\{s_n\}_{n\geq 1}$ de funções simples sem sinal e finitas tal que $s_n \to f$ em todo ponto.
- (2) Uma função $f: X \to \mathbb{R}$ é mensurável se e somente se existe uma sequência $\{s_n\}_{n\geq 1}$ de funções simples (com sinal) e finitas tal que $s_n \to f$ em todo ponto.

Demonstração. As implicações indiretas são consequências do Teorema 9 (3) e da Observação 7 (que toda função simples é mensurável).

A construção de uma sequência monótona de funções simples que convergem para f é idêntica a do caso da integral de Lebesgue no espaço euclidiano. De fato, dada $f: X \to [0, \infty]$ mensurável, para todo $n \ge 1$ seja

$$s_n := n \, \mathbf{1}_{\{f \ge n\}} + \sum_{j=0}^{n \, 2^n - 1} \, \frac{j}{2^n} \, \mathbf{1}_{\left\{f \in \left[\frac{j}{2^n}, \frac{j+1}{2^n}\right)\right\}} \, .$$

Não é difícil verificar que $s_n \leq s_{n+1}$ para todo $n \geq 1$.

Além disso, se $f(x) = \infty$, então para todo $n \ge 1$, $s(x) = n \to \infty = f(x)$, enquanto se $f(x) < \infty$, para todo n > f(x) tem-se

$$|s_n(x) - f(x)| \le \frac{j+1}{2^n} - \frac{j}{2^n} = \frac{1}{2^n} \to 0,$$

logo $s_n(x) \to f(x)$.

Finalmente, dada uma função mensurável com sinal $f\colon X\to\mathbb{R}$, como f^+,f^- são funções mensuráveis sem sinal, pelo argumento acima, existem sequências de funções simples $\{s_n\}_{n\geq 1}$ e $\{\sigma_n\}_{n\geq 1}$ tal que $s_n\to f^+$ e $\sigma_n\to f^-$ em todo ponto. Portanto, para todo $n\geq 1$, a função $s_n-\sigma_n$ é simples e

$$s_n - \sigma_n \to f^+ - f^-$$
.

Teorema 11. Sejam (X, \mathcal{B}) um espaço mensurável, $f: X \to \mathbb{R}$ e $g: X \to \mathbb{R}$ duas funções mensuráveis. Então f + g e $f \cdot g$ são mensuráveis também.

Demonstração. Pelo teorema anterior, existem duas sequências de funções simples $\{s_n\}_{n\geq 1}$ e $\{\sigma_n\}_{n\geq 1}$ tais que $s_n\to f$ e $\sigma_n\to g$ em todo ponto.

Então para todo $n \ge 1$, as funções $s_n + \sigma_n$ e $s_n \cdot \sigma_n$ são simples e evidentemente,

$$s_n + \sigma_n \to f + g, \ s_n \cdot \sigma_n \to f \cdot g,$$

mostrando, via Teorema 10, que f + g e $f \cdot g$ são mensuráveis.

4. A INTEGRAL DE UMA FUNÇÃO MENSURÁVEL

Seja (X, \mathcal{B}, μ) um espaço de medida. A construção da integral de uma função mensurável em X segue exatamente a mesma abordagem que a da integral de Lebesgue no espaço euclidiano.

(1) Seja $s: X \to [0, \infty],$

$$s = \sum_{i=1}^k c_i \, \mathbf{1}_{E_i}$$

uma função simples. Então,

$$\int_X s \, d\mu := \sum_{i=1}^k c_i \, \mu(E_i).$$

Resta mostrar que este conceito é bem definido, ou seja, se s possui duas representações do tipo

$$s = \sum_{i=1}^{k} c_i \, \mathbf{1}_{E_i} = \sum_{j_1}^{l} d_j \, \mathbf{1}_{F_j},$$

então

$$\sum_{i=1}^{k} c_i \mu(E_i) = \sum_{j=1}^{l} d_j \mu(F_j),$$

A prova deste fato é igual a do cenário de funções simples no espaço euclidiano.

(2) Seja $s: X \to \mathbb{R}$ uma função simples. Então, já que s pode ser representada como

$$\sum_{i=1}^k c_i \, \mathbf{1}_{E_i}$$

onde os conjuntos mensuráveis $\{E_i\}_{i\in[k]}$ são disjuntos, segue que

$$s^{\pm} = \sum_{i=1}^{k} c_i^{\pm} \mathbf{1}_{E_i} e |s| = \sum_{i=1}^{k} |c_i| \mathbf{1}_{E_i}$$

Portanto, s^+ , s^- , |s| são funções simples sem sinais.

A função s é dita absolutamente integrável se

$$\int_{X} |s| \ d\mu < \infty.$$

Neste caso, definimos

$$\int_X s \, d\mu := \int_X s^+ \, d\mu - \int_X s^- \, d\mu.$$

(3) Seja $f: X \to [0, \infty]$ uma função mensurável. Definimos

$$\int_X f \, d\mu := \sup \left\{ \int_X s \, d\mu \colon 0 \le s \le f, \, s \text{ \'e simples} \right\}.$$

Não é dificil ver que

$$\int_X f \, d\mu := \sup \left\{ \int_X s \, d\mu \colon 0 \le s \le f, \, s \text{ \'e simples e finita} \right\},$$

e, de fato, outras restrições sobre s podem ser feitas, dependendo do contexto (por exemplo, em \mathbb{R}^d , s pode ser escolhida com suporte compacto).

(4) Seja $f: X \to \mathbb{R}$ uma função mensurável. Então, como f é o limite pontual de uma sequência de funções simples, segue imediatamente que f^+ , f^- e |f| também são tais limites, logo são mensuráveis também.

Chamamos f de absolutamente integravel se

$$\int_X |f| \ d\mu < \infty$$

Neste caso,

$$\int_X f \, d\mu := \int_X f^+ \, d\mu - \int_X f^- \, d\mu.$$

Teorema 12. (propriedades básicas da integral)

Sejam (X, \mathcal{B}, μ) um espaço de medida e $f, g: X \to [0, \infty]$ (ou $f, g: X \to \mathbb{R}$) duas funções mensuráveis (ou, respectivamente, absolutamente integráveis). As seguintes valem:

(1) (monotonicidade e equivalência)

Se
$$f \leq g$$
 em μ -q.t. p então $\int_X f d\mu \leq \int_X g d\mu$.
Se $f = g$ em μ -q.t. p então $\int_X f d\mu = \int_X g d\mu$.

(2) (linearidade)

$$\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$$
$$\int_X cf d\mu = c \int_X f d\mu.$$

(3) (divisibilidade)

Se $E \in \mathcal{B}$ então f $\mathbf{1}_E$ e f $\mathbf{1}_{E^{\complement}}$ são mensuráveis e

$$\int_X f\,d\mu = \int_X f\,\mathbf{1}_E\,d\mu + \int_X f\,\mathbf{1}_{E^\complement}\,d\mu\,.$$

Denotado por

$$\int_E f \, d\mu := \int_X f \, \mathbf{1}_E$$

temos

$$\int_X f\,d\mu = \int_E f\,d\mu + \int_{E^\complement} f\,d\mu\,.$$

(4) (a desigualdade de Markov)

Se $f: X \to [0, \infty]$, para todo $\lambda > 0$ tem-se

$$\mu \left\{ f \ge \lambda \right\} \le \frac{\int_X f \, d\mu}{\lambda} \, .$$

(5)

$$\int_X |f| \ d\mu = 0 \quad sse \quad f = 0 \ \mu - q.t.p.$$
 Se
$$\int_X |f| \ d\mu < \infty \ ent \tilde{ao} \ |f| < \infty \ \mu - q.t.p.$$

Demonstração. O argumento é o mesmo que no caso da integral de Lebesgue. Desrevemos os passos principais.

(1) O primeiro passo é estabelecer a monotonicidade da integral para funções simples. O caso geral segue-se da definição

A equivalência é uma consequência imediata da monotonicidade.

- (2) De novo, o primeiro passo é provar linearidade da integral para funções simples. O caso geral segue-se do teorema de convergência monótona, que será tratado na seção seguinte.
- (3) Produto de funções mensuráveis é mensurável, enquanto a função indicadora de um conjunto mensurável é mensurável. Portanto, $f\mathbf{1}_E$ e $f\mathbf{1}_{E^\complement}$ são mensuráveis. Como

$$f = f\mathbf{1}_E + f\mathbf{1}_{E^{\complement}},$$

a divisibilidade segue da linearidade.

(4) Como $f \ge \lambda \mathbf{1}_{\{f \ge \lambda\}}$, a desigualdade de Markov é consequência da monotonicidade da integral:

$$\int_X f \, d\mu \, \geq \, \int_X \lambda \, \mathbf{1}_{\{f \geq \lambda\}} \, d\mu \, = \, \lambda \, \mu \, \{f \geq \lambda\} \, ,$$
 Logo
$$\mu \, \{f \geq \lambda\} \, \leq \, \frac{\int_X f \, d\mu}{\lambda} \, .$$

(5) Claramente

$${f \neq 0} = {|f| > 0} = \bigcup_{n \ge 1} {|f| \ge \frac{1}{n}}.$$

Pela desigualdade de Markov, para todo $\varepsilon > 0$,

$$\mu\{|f| \ge \varepsilon\} \le \frac{\int_X |f| \ d\mu}{\varepsilon} = \frac{0}{\varepsilon} = 0.$$

Logo $\mu\left\{|f|\geq \frac{1}{n}\right\}=0$ para todo $n\geq 1$. Concluímos que $\mu\left\{f\neq 0\right\}=0$, ou seja, f=0 μ -q.t.p.

Finalmente,

$$\{|f| = \infty\} = \bigcap_{n \ge 1} \{|f| \ge n\}$$

Pela desigualdade de Markov, para todo $n \ge 1$,

$$\mu \left\{ |f| \ge n \right\} \le \frac{\int_X |f| \ d\mu}{n} \to 0$$

pois $\int_X |f| d\mu < \infty$.

Como, evidentemente, a sequência de conjuntos $\{|f| \ge n\}_{n \ge 1}$ é não crescente, pelo teorema de convergência monótona para conjuntos tem-se

$$\mu \{|f| = \infty\} = \lim_{n \to \infty} \mu \{|f| \ge n\} = 0.$$

Dado um espaço de medida (X, \mathcal{B}, μ) , seja

$$\mathcal{L}^1(X,\mathcal{B},\mu) := \left\{ f \colon X \to \mathbb{R} \colon f \text{ \'e mensur\'avel e } \int_X |f| \ d\mu \ < \ \infty \right\}$$

o espaço vetorial de funções absolutamente integraveis em X.

De fato, se $f, g \in \mathcal{L}^1(X, \mathcal{B}, \mu)$, f + g é mensurável (pois f e g são mensuráveis) e como $|f + g| \le |f| + |g|$,

tem-se

$$\int_{X} |f + g| \ d\mu \le \int_{X} |f| \ d\mu + \int_{X} |g| \ d\mu < \infty,$$

logo $f + g \in \mathcal{L}^1(X, \mathcal{B}, \mu)$

Além disso, se $f \in \mathcal{L}^1(X, \mathcal{B}, \mu)$ e $c \in \mathbb{R}$ então cf é mensurável e

$$\int_X |cf| \, d\mu \, = \, |c| \int_X |f| \, d\mu \, < \, \infty,$$

então $cf \in \mathcal{L}^1(X, \mathcal{B}, \mu)$.

Definimos o espaço L^1 por

$$L^1(X, \mathcal{B}, \mu) := \mathcal{L}^1(X, \mathcal{B}, \mu) / \sim$$

onde $f \sim g$ se f = g em μ -q.t.p.

Como pelo Teorema 12 (5), dada uma função $f \in \mathcal{L}^1(X, \mathcal{B}, \mu)$,

$$\int_X |f| \ d\mu = 0 \text{ sse } f = 0 \ \mu - \text{q.t.p.}$$

acontece que

$$||f||_1 := \int_X |f| \ d\mu$$

é uma norma em $L^1(X, \mathcal{B}, \mu)$.

Então, $(L^1(X, \mathcal{B}, \mu), \|\cdot\|_1)$ é um espaço normado. Provaremos, no próximo capítulo que, na verdade, é um espaço de Banach.

Outras notações comuns deste espaço são $L^1(X), L^1(d\mu), L^1(X,\mu)$ e etc.

Ademais, dado um número real $1 \le p < \infty$,

Seja

$$L^p(X,\mathcal{B},\mu) := \left\{ f \colon X \to \mathbb{R} \colon f \text{ \'e mensur\'avel e } \int_X |f|^p \ d\mu < \infty \right\},$$

módulo igualdade q.t.p.

Munido com

$$||f||_p := \left(\int_X |f|^p \ d\mu\right)^{\frac{1}{p}},$$

 $\left(L^p(X,\mathcal{B},\mu), \|\cdot\|_p\right)$ também é um espaço normado. Essa afirmação será provada no próximo capítulo. Entretanto, vamos estabelecer a desigualdade de Chebyshev para funções L^p .

Teorema 13. (a desigualdade de Chebyshev) Sejam (X, \mathcal{B}, μ) um espaço de medida, $1 \leq p < \infty$ e $f \in L^p(X, \mathcal{B}, \mu)$. Então, para todo $\lambda > 0$ temos

$$\mu\{|f| \ge \lambda\} \le \frac{\|f\|_p^p}{\lambda^p}.$$

Demonstração. Aplicamos a desigualdade de Markov à função $\left|f\right|^{p}.$

Primeiro, como $f: X \to \mathbb{R}$ é mensurável e $\varphi: \mathbb{R} \to \mathbb{R}$, $\varphi(x) = |x|^p$ é contínua, segue que

$$\varphi \circ f = |f|^p$$

é mensurável (e sem sinal).

Como

$$|f| \ge \lambda \Leftrightarrow |f|^p \ge \lambda^p$$
,

pela desigualdade de Markov,

$$\mu\{|f| \ge \lambda\} = \mu\{|f|^p \ge \lambda^p\} \le \frac{\int_X |f|^p d\mu}{\lambda^p} = \frac{\|f\|_p^p}{\lambda^p}.$$

5. Os teoremas de convergência

Sejam (X, \mathcal{B}, μ) um espaço de medida, $\{f_n\}_{n\geq 1}$ uma sequência de funções mensuráveis sem sinais e f uma outra função mensurável sem sinal.

Suponha que

$$f_n \to f \text{ em q.t.p.}$$

Questão. Quando podemos concluir que

$$\int_X f_n \, d\mu \, \to \, \int_X f \, d\mu \quad ?$$

Ou seja, quando podemos trocar o limite com a integral?

$$\lim_{n\to\infty} \int_X f_n \, d\mu \stackrel{?}{=} \int_X \lim_{n\to\infty} f_n \, d\mu \, .$$

Uma situação especial, similar a da integral é apresentada na seguinte proposição.

Proposição 5 (convergência uniforme em um espaço de medida finita). Seja (X, \mathcal{B}, μ) um espaço de medida finita, i.e, $\mu(X) < \infty$. Sejam $\{f_n\}_{n\geq 1}$ uma sequência de funções mensuráveis sem sinais ou uma sequência de funções absolutamente integráveis e f uma outra função real.

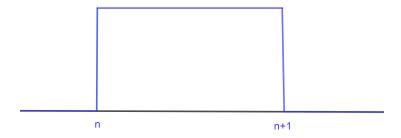
Se $f_n \to f$ uniformemente então

$$\int_X f_n \to \int_X f.$$

Demonstração. Exercício.

O resultado anterior vale sob uma hipótese muito restritiva, a de convergência uniforme. Procuramos tais resultados de convergência da integral sob hipóteses sem mais gerais. Mas antes de enunciar estes resultados, notamos que há casos em que $n\tilde{a}o$ podemos trocar o limite e a integral. Descrevemos três exemplos simples mas típicos de obstruções a essa propriedade, a saber, exemplos de funções "bump" em movimento.

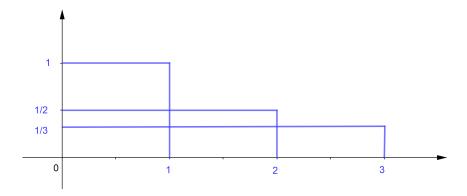
Exemplo 14. Considere o espaço $X = \mathbb{R}$ munido com a medida $\mu = m$, a medida de Lebesgue. Seja $f_n = \mathbf{1}_{[n,n+1]}$ para todo $n \geq 1$.



Então $f_n \to 0$ em todo ponto, mas

$$\int_{\mathbb{R}} f_n d\mathbf{m} = \mathbf{m} ([n, n+1]) = 1 \not\to 0 = \int_{\mathbb{R}} 0 d\mathbf{m}.$$

Exemplo 15. Considere o espaço $X = \mathbb{R}$ munido com a medida $\mu = m$ de Lebesgue. Para todo $n \geq 1$, seja $f_n = \frac{1}{n} \mathbf{1}_{[0,n]}$.

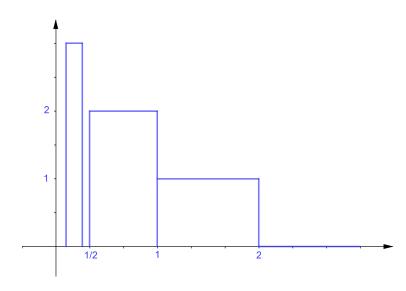


Como $|f_n| \leq \frac{1}{n} \to 0$, temos que $f_n \to 0$ uniformemente. Por outro lado,

$$\int_{\mathbb{R}} f_n \, d\mathbf{m} = \frac{1}{n} \, m([0, n]) = 1 \not\to 0 = \int_{\mathbb{R}} 0 \, d\mathbf{m},$$

mostrando também que a hipótese $\mu(X) < \infty$ da Proposição 5 é necessária.

Exemplo 16. Considere o espaço X=[0,2] munido com a medida $\mu=$ m de Lebesgue restrita ao intervalo [0,2]. Para todo $n\geq 1$, seja $f_n:=n\mathbf{1}_{\left[\frac{1}{n},\frac{2}{n}\right]}$.



Então, $f_n \to 0$ em todo ponto, mas

$$\int_{[0,2]} f_n \, d\mathbf{m} = n \, \mathbf{m} \left(\left[\frac{1}{n}, \frac{2}{n} \right] \right) = 1 \not\to 0 = \int_{[0,2]} 0 \, d\mathbf{m} \, .$$

Teorema 17 (de convergência monótona). Seja (X, \mathcal{B}, μ) um espaço de medida e seja $\{f_n\}_{n\geq 1}$ uma sequência não decrescente de funções mensuráveis sem sinais, i.e.

$$0 \le f_1 \le f_2 \le \dots$$

Então,

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X \lim_{n \to \infty} f_n \, d\mu.$$

Demonstração. A prova deste resultado é similar a do caso da integral de Lebesgue em \mathbb{R}^d . Ela usa um argumento de tempos de parada para conseguir algum comportamento uniforme da sequência $\{f_n\}_{n\geq 1}$. Esboçamos o argumento abaixo.

Seia

$$f(x) := \lim_{n \to \infty} f_n(x) = \sup_{n \ge 1} f_n(x).$$

Então, f é mensurável.

Pela monotonicidade da integral, já que $f_n \leq f_{n+1}$ para todo $n \geq 1$, a sequência $\left\{ \int_X f_n \, d\mu \right\}_{n \geq 1}$ é não decrescente, então $\lim_{n \to \infty} \int_Y f_n \, d\mu$ existe e

$$\lim_{n \to \infty} \int_X f_n \, d\mu \le \int_X f \, d\mu.$$

Resta provar a desigualdade aposta:

$$\int_X f \, d\mu \le \lim_{n \to \infty} \int_X f_n \, d\mu.$$

Como

$$\int_X f \, d\mu = \sup \left\{ \int_X s \, d\mu \colon 0 \le s \le f, \, s \text{ \'e simples e finita} \right\},$$

basta provar que dada uma função simples e finita s tal que $0 \le s \le f$, temos que

$$\int_X s \, d\mu \le \lim_{n \to \infty} \int_X f_n \, d\mu.$$

Seja $\epsilon > 0$ arbitrário. Então é suficiente provar que

$$(1 - \epsilon) \int_X s \, d\mu \le \lim_{n \to \infty} \int_X f_n \, d\mu.$$

Escrevemos

$$s = \sum_{i=1}^k c_i \, \mathbf{1}_{E_i},$$

onde para todo $i \in [k], c_i \in (0, \infty)$ e $E_i \in \mathcal{B}$ são conjuntos disjuntos.

Fixe $j \in [k]$. Se $x \in E_j$ então $s(x) = c_j$, logo

$$(1 - \epsilon)c_j = (1 - \epsilon)s(x) < f(x) = \sup_{n > 1} f_n(x).$$

Portanto, existe $n_x \in \mathbb{N}$ tal que

$$(1) (1-\epsilon)c_j < f_{n_x}(x).$$

Definimos, para todo $n \geq 1$,

$$E_{j,n} := \{ x \in E_j : (1 - \epsilon)c_j < f_n(x) \}.$$

Então $E_{j,n}$ é mensurável (já que f_n e E_j são mensuráveis) e claramente, usando (1) e a monotonicidade da sequência $\{f_n\}_{n\geq 1}$, segue que

$$E_{j,n} \nearrow E_j$$
 quando $n \to \infty$.

Pelo teorema de convergência monótona para conjuntos, segue que

$$\mu(E_{j,n}) \to \mu(E_j)$$
 quando $n \to \infty$.

Para todo $n \ge 1$ definimos

$$s_n := \sum_{j=1}^k (1 - \epsilon) c_j \, \mathbf{1}_{E_{j,n}}.$$

Não é difícil perceber que para todo $x \in X$, tem-se

$$s_n(x) < f_n(x)$$
.

Então,

$$\int_{X} f_n \, d\mu \ge \int_{X} s_n \, d\mu = \sum_{j=1}^{k} (1 - \epsilon) c_j \, \mu(E_{j,n}).$$

Tomando o limite quando $n \to \infty$, segue que

$$\lim_{n \to \infty} \int_X f_n d\mu \ge \sum_{j=1}^k (1 - \epsilon) c_j \, \mu(E_j) = (1 - \epsilon) \int_X s \, d\mu,$$

finalizando a prova do teorema.

6. Consequências do teorema de convergência monótona

Teorema 18 (de Tonelli). Seja $\{f_n\}_{n\geq 1}$ uma sequência de funções mensuráveis $f_n\colon X\to [0,\infty]$. Então a série $\sum_{n=1}^\infty f_n$ é mensurável e

$$\int_X \sum_{n=1}^{\infty} f_n \ d\mu = \sum_{n=1}^{\infty} \int_X f_n \, d\mu.$$

Demonstração. Evidentemente, a sequência

$$s_n := f_1 + \ldots + f_n , n \ge 1$$

de somas parciais satisfaz as hipóteses do Teorema de convergência monótona (já que $f_n \ge 0$). Portanto,

$$\int_X \sum_{n=0}^\infty f_n \, d\mu = \int_X \lim_{n \to \infty} s_n \, d\mu = \lim_{n \to \infty} \int_X s_n \, d\mu = \lim_{n \to \infty} \left(\sum_{k=1}^n \int_X f_k \, d\mu \right) = \sum_{n=1}^\infty \int_X f_n \, d\mu.$$

Lema 1 (de Borel-Cantelli). Seja (X, \mathcal{B}, μ) um espaço de medida e seja $\{E_n : n \geq 1\} \subset \mathcal{B}$ uma sequência de conjuntos mensuráveis. Suponha que

$$\sum_{n=1}^{\infty} \mu(E_n) < \infty.$$

Então, μ -q.t.p. $x \in X$ pertence apenas a um número finito de conjuntos E_n , ou seja, para μ -q.t.p. $x \in X$,

$$\#\{n \in \mathbb{N} : x \in E_n\} < \infty.$$

Demonstração. Para todo $n \geq 1$, seja $\mathbf{1}_{E_n}$ a função indicadora do conjunto mensurável E_n . Note que, dado $x \in X$ a série

$$\sum_{n=1}^{\infty} \mathbf{1}_{E_n}(x)$$

conta exatamente o número de conjuntos E_n onde x pertence, ou seja,

$$\sum_{n=1}^{\infty} \mathbf{1}_{E_n}(x) = \#\{n \in \mathbb{N} : x \in E_n\}.$$

L

Pelo Teorema de Tonelli,

$$\int_X \left(\sum_{n=1}^\infty \mathbf{1}_{E_n}\right) d\mu = \sum_{n=1}^\infty \int_X \mathbf{1}_{E_n} d\mu = \sum_{n=1}^\infty \mu(E_n) < \infty.$$

Portanto, pelo Teorema 1 (5) da aula 22,

$$\sum_{n=1}^{\infty} \mathbf{1}_{E_n} < \infty \quad \mu\text{-q.t.p.},$$

assim mostrando que

$$\#\{n \in \mathbb{N} \colon x \in E_n\} < \infty$$

para μ -q.t.p. $x \in X$.

Lema 2 (de Fatou). Sejam (X, \mathcal{B}, μ) um espaço de medida e $\{f_n\}_{n\geq 1}$ uma sequência de funções mensuráveis $f_n \colon X \to [0, \infty]$ (uma sequência não necessariamente monótona). Então,

$$\int_{X} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_{X} f d\mu$$

Demonstração. Seja

$$g := \liminf_{n \to \infty} g_n = \lim_{n \to \infty} \inf_{k > n} f_k$$
.

Para todo $n \geq 1$ denote por $g_n := \inf_{k \geq n} f_k$. Então g_n é mensurável e

$$g_n \nearrow g$$
 quando $n \to \infty$.

Pelo teorema de convergência monótona, temos que

$$\int_X g_n d\mu \to \int_X g d\mu \quad \text{quando } n \to \infty$$

Portanto,

$$\begin{split} \int_X \liminf_{n \to \infty} \, f_n \, d\mu &= \int_X g \, d\mu = \lim_{n \to \infty} \int_X g_n \, d\mu \\ &= \lim_{n \to \infty} \int_X \inf_{k \ge n} f_k \, d\mu \le \lim_{n \to \infty} \inf_{k \ge n} \int_X f_k \, d\mu \\ &= \lim_{n \to \infty} \inf_{k \ge n} \int_X f_k \, d\mu, \end{split}$$

onde a desigualdade acima é válida por causa da monotonicidade da integral. De fato,

$$\inf_{k>n} f_n \le f_k \text{ para todo } k \ge n$$

então

$$\int_{X} \inf_{k \ge n} f_n \, d\mu \le \int_{X} f_k \, d\mu \text{ para todo } k \ge n,$$

logo

$$\int_X \inf_{k \ge n} f_n \, d\mu \, \le \, \inf_{k \ge n} \int_X f_k \, d\mu.$$

Observação 8. A desigualdade no lema de Fatou pode ser estrita. Isso acontece por exemplo com alguns tipos de sequências de funções bump em movimento.

Para todo $n \geq 1$, seja $f_n := n \mathbf{1}_{(0,\frac{1}{n}]} \colon \mathbb{R} \to \mathbb{R}$ Então $f_n \to 0$ em todo ponto e

$$\int_{\mathbb{R}} \lim_{n \to \infty} \inf f_n \, d\mu = \int_{\mathbb{R}} 0 \, d\mu = 0 < 1 = \lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu.$$

Um outro exemplo é a sequência

$$f_n := \frac{1}{n} \mathbf{1}_{[0,n]} \colon \mathbb{R} \to \mathbb{R}$$

de funções bump baixas e longas (em vez de altas e curtas).

Temos que $f_n \to 0$ uniformimente, enquanto $\int f_n = 1 \to 1 > 0 = \int 0$.

Observação 9. A condição $f_n \ge 0$ no lema de Fatou (ou, pelo menos, uma outra cota inferior apropriada) é necessária.

Por exemplo, consideremos, para todo $n \ge 1$,

$$f_n := -\frac{1}{n} \mathbf{1}_{[n,2n]} \colon \mathbb{R} \to \mathbb{R},$$

temos que $f_n \to 0$ uniformimente, logo

$$\int_{\mathbb{R}} \lim_{n \to \infty} \inf f_n \, d\mu = \int_{\mathbb{R}} 0 \, d\mu = 0,$$

enquanto

$$\int_{\mathbb{R}} f_n \, d\mu = -1 \to -1 < 0,$$

logo

$$\int_{\mathbb{R}} \lim_{n \to \infty} \inf f_n \, d\mu > \liminf_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu.$$

Teorema 19 (de convergência dominada). Sejam (X, \mathcal{B}, μ) um espaço de medida, $\{f_n\}_{n\geq 1}$ uma sequência de funções mensuráveis, $f_n \colon X \to \mathbb{R}$, e $f \colon X \to \mathbb{R}$ uma outra função tal que

$$f_n \to f \ em \ \mu - q.t.p.$$

Suponha que exista $g \in L^1(X, \mathcal{B}, \mu)$ tal que $|f_n| \leq g$ para todo $\mu - q.t.p.$ e para todo $n \geq 1$ (ou seja, suponha que a sequência $\{f_n\}_{n\leq 1}$ seja dominada por uma função absolutamente integrável). Então, $f \in L^1(X, \mathcal{B}, \mu)$ e

$$\int_X f_n \, d\mu \, \to \, \int_X f \, d\mu.$$

Demonstração. Como $f_n \to f$ e $|f| \le g \ \mu - q.t.p.$ para todo $n \ge 1$, seque que $|f| \le g \ \mu - q.t.p.$ Logo,

$$\int_{Y} |f| \ d\mu \le \int_{Y} g \, d\mu < \infty,$$

mostrando que $f \in L^1(X, B, \mu)$.

Como $|f_n| \le g \ \mu - q.t.p.$, temos que

$$-g \le f_n \le g \ \mu - q.t.p.,$$

então

$$\begin{cases} f_n + g \ge 0 & \mu - q.t.p. \\ g - f_n \ge 0 & \mu - q.t.p. \end{cases}$$

Portanto, podemos aplicar o lema de Fatou é aplicável às sequências $\{f_n+g\}_{n\geq 1}$ e $\{g-f_n\}_{n\geq 1}$.

Como

$$\int_{X} \liminf_{n \to \infty} (f_n + g) d\mu = \int_{X} \liminf_{n \to n} f_n d\mu + \int_{X} g,$$

$$\liminf_{n \to \infty} \int_{X} (f_n + g) d\mu = \liminf_{n \to \infty} \int_{X} f_n d\mu + \int_{X} g d\mu$$

 $\int_X g d\mu \in \mathbb{R}$, segue que

(2)
$$\int_{X} \liminf_{n \to \infty} f_n \, d\mu \leq \liminf_{n \to \infty} \int_{X} f_n \, d\mu.$$

$$\int_{X} \liminf_{n \to \infty} (g - f_n) d\mu \le \liminf_{n \to \infty} \int_{X} (g - f_n) d\mu.$$
Como

$$\int_{X} \liminf_{n \to \infty} (g - f_n) d\mu = \int_{X} g d\mu + \int_{X} \liminf_{n \to \infty} (-f_n) d\mu = \int_{X} g d\mu - \int_{X} \limsup_{n \to \infty} f_n d\mu,$$

$$\liminf_{n \to \infty} \int_{X} (g - f_n) d\mu = \int_{X} g d\mu + \liminf_{n \to \infty} \int_{X} (-f_n) d\mu = \int_{X} g d\mu - \limsup_{n \to \infty} \int_{X} f_n d\mu,$$
regular rule

(3)
$$\int_{X} \lim_{n \to \infty} \sup f_n \, d\mu \ge \lim_{n \to \infty} \sup \int_{X} f_n \, d\mu.$$

Combinando (2) e (3), tem-se

$$\int_{X} f \, d\mu = \int_{X} \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int_{X} f_n \, d\mu$$

$$\le \limsup_{n \to \infty} \int_{X} f_n \, d\mu \le \int_{X} \limsup_{n \to \infty} f_n \, d\mu = \int_{X} f \, d\mu,$$

logo
$$\lim_{n\to\infty} \int_X f_n d\mu$$
 existe e é igual a $\int_X f d\mu$.

Corolário 1. Dada uma sequência de funções mensuráveis $\{f_n \colon X \to \mathbb{R}\}_{n \geq 1}$ tal que $f_n \to f$ em μ -q.t.p. e $|f_n| \leq g$ para todo $n \geq 1$ e para alguma função $g \in L^1(X)$, segue que

$$f_n \to f \text{ em } L^1$$
.

Demonstração. Como $|f_n| \leq g$ e $g \in L^1(X)$, tem-se

$$\int_{X} |f_n| \ d\mu \le \int_{X} g \, d\mu < \infty,$$

logo $f_n \in L^1(X)$.

Já que $f_n \to f$ em μ -q.t.p.,

$$|f_n - f| \to 0$$
 μ -q.t.p.

Além disso,

$$|f_n - f| \le |f_n| + |f| \le g + |f| \mu - q.t.p.$$

е

$$\int_X (g + |f|) \, d\mu \, = \, \int_X g \, d\mu \, + \, \int_X |f| \, \, d\mu \, < \infty,$$

portanto $g + |f| \in L^1(X)$.

Pelo teorema de convergência dominada aplicada à sequência $\{|f_n - f|\}_{n \ge 1}$, segue que

$$||f_n - f||_1 = \int_X |f_n - f| d\mu \to \int_X 0 d\mu = 0,$$

mostrando que $f_n \to f$ com respeito a norma um (a norma L^1).

Exercício 2. Calcule

$$\lim_{n\to\infty} \int_0^1 nx^2 \, \operatorname{sen}\left(\frac{1}{nx}\right) \, dx.$$

Solução. Para todo $n \geq 1$, definimos $f_n : [0,1] \to \mathbb{R}$ por

$$f_n(x) = \begin{cases} n x^2 \operatorname{sen}\left(\frac{1}{nx}\right) & \operatorname{se} x \neq 0\\ 0 & \operatorname{se} x = 0. \end{cases}$$

Então f_n é contínua em [0,1], logo é Rieman e Lebesgue integrável em [0,1]. Além disso,

$$\int_0^1 f_n(x) \, dx = \int_{[0,1]} f_n \, d\mathbf{m}.$$

Se $x \neq 0$, então

$$f_n(x) = \frac{\operatorname{sen}(\frac{1}{nx})}{\frac{1}{nx}} \cdot x \to 1 \cdot x = x \text{ quando } n \to \infty.$$

Seja $f: [0,1] \to \mathbb{R}, f(x) = x$.

Note que $f \in L^1([0,1], \mathbf{m})$, pois

$$\int_{[0,1]} |f| \ d\mathbf{m} = \int_0^1 x \, dx = \frac{1}{2} < \infty.$$

Além disso, já que $\left|\frac{\text{sen}\,t}{t}\right| \leq 1$ para todo $t \neq 0$, temos que $|f_n(x)| \leq x$ para todo $x \neq 0$. Então o teorema de convergência dominada é aplicável e temos que

$$\int_0^1 f_n(x) dx = \int_{[0,1]} f_n d\mathbf{m} \to \int_{[0,1]} x d\mathbf{m} = \frac{1}{2}.$$

7. Modos de convergência

Dados um espaço de medida (X, \mathcal{B}, μ) , uma sequência de funções mensuráveis $\{f_n \colon X \to \mathbb{R}\}_{n \geq 1}$ e uma outra função mensurável $f \colon X \to \mathbb{R}$, $\{f_n\}_{n \geq 1}$ pode convergir para f de maneiras diferentes.

- (1) Convergência pontual
 - (a) em todo ponto

$$f_n(x) \to f(x)$$
 para todo $x \in X$.

(b) em q.t.p.: existe $W^c \in \mathcal{B}$,

$$\mu(W^c) = 0$$

t.q.

$$f_n(x) \to f(x)$$
 se $x \in W^c$.

- (2) Convergência uniforme
 - (c) no espaço inteiro: se $\forall \varepsilon > 0 \ \exists N_{\varepsilon}$

$$t.q. |f_n(x) - f(x)| < \varepsilon \ \forall x \in X \text{ para } n \ge N_{\varepsilon}.$$

:

A ser continuado.